cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 91 results. Next

A370586 Number of subsets of {1..n} containing n such that it is possible to choose a different prime factor of each element (choosable).

Original entry on oeis.org

0, 0, 1, 2, 2, 6, 8, 20, 12, 20, 44, 116, 88, 320, 380, 508, 264, 1792, 968, 4552, 3136, 5600, 10056, 27896, 11792, 16384, 46688, 19584, 48288, 198528, 110928, 507984, 99648, 463552, 859376, 821136, 470688, 3730368, 4033920, 4651296, 2932512, 19078464
Offset: 0

Views

Author

Gus Wiseman, Feb 26 2024

Keywords

Examples

			The a(0) = 0 through a(7) = 20 subsets:
  .  .  {2}  {3}    {4}    {5}      {6}      {7}
             {2,3}  {3,4}  {2,5}    {2,6}    {2,7}
                           {3,5}    {3,6}    {3,7}
                           {4,5}    {4,6}    {4,7}
                           {2,3,5}  {5,6}    {5,7}
                           {3,4,5}  {2,5,6}  {6,7}
                                    {3,5,6}  {2,3,7}
                                    {4,5,6}  {2,5,7}
                                             {2,6,7}
                                             {3,4,7}
                                             {3,5,7}
                                             {3,6,7}
                                             {4,5,7}
                                             {4,6,7}
                                             {5,6,7}
                                             {2,3,5,7}
                                             {2,5,6,7}
                                             {3,4,5,7}
                                             {3,5,6,7}
                                             {4,5,6,7}
		

Crossrefs

First differences of A370582, complement A370583, cf. A370584.
Maximal choosable sets are counted by A370585.
The complement is counted by A370587.
For a unique choice we have A370588.
For binary indices instead of prime factors we have A370639.
A006530 gives greatest prime factor, least A020639.
A027746 lists prime factors, indices A112798, length A001222.
A355741 counts choices of a prime factor of each prime index.
A367902 counts choosable set-systems, ranks A367906, unlabeled A368095.
A367903 counts non-choosable set-systems, ranks A367907, unlabeled A368094.
A368098 counts choosable unlabeled multiset partitions, complement A368097.
A368100 ranks choosable multisets, complement A355529.
A368414 counts choosable factorizations, complement A368413.
A370592 counts choosable partitions, complement A370593.

Programs

  • Mathematica
    Table[Length[Select[Subsets[Range[n]], MemberQ[#,n]&&Length[Select[Tuples[If[#==1, {},First/@FactorInteger[#]]&/@#], UnsameQ@@#&]]>0&]],{n,0,10}]

Extensions

a(19)-a(41) from Alois P. Heinz, Feb 27 2024

A370594 Number of integer partitions of n such that only one set can be obtained by choosing a different prime factor of each part.

Original entry on oeis.org

1, 0, 1, 1, 1, 2, 0, 3, 3, 4, 3, 4, 5, 5, 8, 10, 11, 7, 14, 13, 19, 23, 24, 20, 30, 33, 40, 47, 49, 55, 53, 72, 80, 90, 92, 110, 110, 132, 154, 169, 180, 201, 218, 246, 281, 302, 323, 348, 396, 433, 482, 530, 584, 618, 670, 754, 823, 903, 980, 1047, 1137
Offset: 0

Views

Author

Gus Wiseman, Feb 29 2024

Keywords

Examples

			The partition (10,6,4) has unique choice (5,3,2) so is counted under a(20).
The a(0) = 1 through a(12) = 5 partitions:
()  .  (2)  (3)  (4)  (5)    .  (7)    (8)    (9)    (6,4)    (11)   (6,6)
                      (3,2)     (4,3)  (5,3)  (5,4)  (7,3)    (7,4)  (7,5)
                                (5,2)  (6,2)  (6,3)  (5,3,2)  (8,3)  (10,2)
                                              (7,2)           (9,2)  (5,4,3)
                                                                     (7,3,2)
		

Crossrefs

The version for set-systems is A367904, ranks A367908.
Multisets of this type are ranked by A368101, cf. A368100, A355529.
The version for subsets is A370584, cf. A370582, A370583, A370586, A370587.
Maximal sets of this type are counted by A370585.
For existence we have A370592.
For nonexistence we have A370593.
For divisors instead of factors we have A370595.
For subsets and binary indices we have A370638, cf. A370636, A370637.
The version for factorizations is A370645, cf. A368414, A368413.
These partitions have ranks A370647.
A006530 gives greatest prime factor, least A020639.
A027746 lists prime factors, A112798 indices, length A001222.
A355741 counts ways to choose a prime factor of each prime index.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n], Length[Union[Sort/@Select[Tuples[If[#==1, {},First/@FactorInteger[#]]&/@#], UnsameQ@@#&]]]==1&]],{n,0,30}]

A368600 Number of ways to choose a set of n nonempty subsets of {1..n} such that it is not possible to choose a different element from each.

Original entry on oeis.org

0, 0, 0, 3, 164, 18625, 5491851, 4649088885, 12219849683346
Offset: 0

Views

Author

Gus Wiseman, Jan 01 2024

Keywords

Comments

The axiom of choice says that, given any set of nonempty sets Y, it is possible to choose a set containing an element from each. The strict version requires this set to have the same cardinality as Y, meaning no element is chosen more than once.

Examples

			The a(3) = 3 set-systems:
  {{1},{2},{1,2}}
  {{1},{3},{1,3}}
  {{2},{3},{2,3}}
		

Crossrefs

For a unique choice we have A003024, any length A367904 (ranks A367908).
Sets of n nonempty subsets of {1..n} are counted by A136556.
For any length we have A367903, ranks A367907, no singletons A367769.
The complement is A368601, any length A367902 (see also A367770, A367906).
A000372 counts antichains, covering A006126, nonempty A014466.
A003465 counts covering set-systems, unlabeled A055621.
A058891 counts set-systems, unlabeled A000612.
A059201 counts covering T_0 set-systems.
A323818 counts covering connected set-systems, unlabeled A323819.

Programs

  • Mathematica
    Table[Length[Select[Subsets[Rest[Subsets[Range[n]]], {n}],Length[Select[Tuples[#], UnsameQ@@#&]]==0&]],{n,0,3}]
  • Python
    from itertools import combinations, product, chain
    from scipy.special import comb
    def v(c):
        for elements in product(*c):
            if len(set(elements)) == len(elements):
                return True
        return False
    def a(n):
        if n == 0:
            return 1
        subsets = list(chain.from_iterable(combinations(range(1, n + 1), r) for r in range(1, n + 1)))
        cs = combinations(subsets, n)
        c = sum(1 for c in cs if v(c))
        return c
    [print(int(comb(2**n-1,n) - a(n))) for n in range(7)] # Robert P. P. McKone, Jan 02 2024

Formula

a(n) = A136556(n) - A368601(n).

Extensions

a(6) from Robert P. P. McKone, Jan 02 2024
a(7)-a(8) from Christian Sievers, Jul 25 2024

A368601 Number of ways to choose a set of n nonempty subsets of {1..n} such that it is possible to choose a different element from each.

Original entry on oeis.org

1, 1, 3, 32, 1201, 151286, 62453670, 84707326890, 384641855115279
Offset: 0

Views

Author

Gus Wiseman, Jan 01 2024

Keywords

Comments

The axiom of choice says that, given any set of nonempty sets Y, it is possible to choose a set containing an element from each. The strict version requires this set to have the same cardinality as Y, meaning no element is chosen more than once.

Examples

			The a(2) = 3 set-systems:
  {{1},{2}}
  {{1},{1,2}}
  {{2},{1,2}}
Non-isomorphic representatives of the a(3) = 32 set-systems:
  {{1},{2},{3}}
  {{1},{2},{1,3}}
  {{1},{2},{1,2,3}}
  {{1},{1,2},{1,3}}
  {{1},{1,2},{2,3}}
  {{1},{1,2},{1,2,3}}
  {{1},{2,3},{1,2,3}}
  {{1,2},{1,3},{2,3}}
  {{1,2},{1,3},{1,2,3}}
		

Crossrefs

For a unique choice we have A003024, any length A367904 (ranks A367908).
Sets of n nonempty subsets of {1..n} are counted by A136556.
For any length we have A367902, ranks A367906, no singletons A367770.
The complement is A368600, any length A367903 (see also A367907, A367769).
A000372 counts antichains, covering A006126, nonempty A014466.
A003465 counts covering set-systems, unlabeled A055621.
A058891 counts set-systems, unlabeled A000612.
A059201 counts covering T_0 set-systems.
A323818 counts covering connected set-systems, unlabeled A323819.

Programs

  • Mathematica
    Table[Length[Select[Subsets[Rest[Subsets[Range[n]]], {n}],Length[Select[Tuples[#], UnsameQ@@#&]]>0&]],{n,0,3}]
  • Python
    from itertools import combinations, product, chain
    def v(c):
        for elements in product(*c):
            if len(set(elements)) == len(elements):
                return True
        return False
    def a(n):
        if n == 0:
            return 1
        subsets = list(chain.from_iterable(combinations(range(1, n + 1), r) for r in
    range(1, n + 1)))
        cs = combinations(subsets, n)
        c = sum(1 for c in cs if v(c))
        return c
    [print(a(n)) for n in range(7)] # Robert P. P. McKone, Jan 02 2024

Formula

a(n) + A368600(n) = A136556(n).

Extensions

a(6) from Robert P. P. McKone, Jan 02 2024
a(7)-a(8) from Christian Sievers, Jul 25 2024

A371171 Number of integer partitions of n with more parts than distinct divisors of parts.

Original entry on oeis.org

0, 0, 1, 1, 2, 4, 5, 9, 12, 18, 26, 34, 50, 65, 92, 121, 161, 209, 274, 353, 456, 590, 745, 950, 1195, 1507, 1885, 2350, 2923, 3611, 4465, 5485, 6735, 8223, 10050, 12195, 14822, 17909, 21653, 26047, 31340, 37557, 44990, 53708, 64068, 76241, 90583, 107418
Offset: 1

Views

Author

Gus Wiseman, Mar 16 2024

Keywords

Comments

The Heinz numbers of these partitions are given by A370348.

Examples

			The partition (3,2,1,1) has 4 parts {1,2,3,4} and 3 distinct divisors of parts {1,2,3}, so is counted under a(7).
The a(0) = 0 through a(8) = 12 partitions:
  .  .  (11)  (111)  (211)   (221)    (222)     (331)      (2222)
                     (1111)  (311)    (2211)    (511)      (3221)
                             (2111)   (3111)    (2221)     (3311)
                             (11111)  (21111)   (3211)     (4211)
                                      (111111)  (4111)     (5111)
                                                (22111)    (22211)
                                                (31111)    (32111)
                                                (211111)   (41111)
                                                (1111111)  (221111)
                                                           (311111)
                                                           (2111111)
                                                           (11111111)
		

Crossrefs

The partitions are ranked by A370348.
The opposite version is A371173, ranked by A371168.
The RHS is represented by A370820, positions of twos A371127.
The version for equality is A371130 (ranks A370802), strict A371128.
For submultisets instead of parts on the LHS we get ranks A371167.
A000005 counts divisors.
Choosable partitions: A239312 (A368110), A355740 (A370320), A370592 (A368100), A370593 (A355529).

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],Length[#] > Length[Union@@Divisors/@#]&]],{n,0,30}]

A371177 Positive integers whose prime indices include all distinct divisors of all prime indices.

Original entry on oeis.org

1, 2, 4, 6, 8, 10, 12, 16, 18, 20, 22, 24, 30, 32, 34, 36, 40, 42, 44, 48, 50, 54, 60, 62, 64, 66, 68, 72, 80, 82, 84, 88, 90, 96, 100, 102, 108, 110, 118, 120, 124, 126, 128, 132, 134, 136, 144, 150, 160, 162, 164, 166, 168, 170, 176, 180, 186, 192, 198, 200
Offset: 1

Views

Author

Gus Wiseman, Mar 18 2024

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
Also positive integers with as many distinct prime factors (A001221) as distinct divisors of prime indices (A370820).

Examples

			The terms together with their prime indices begin:
    1: {}
    2: {1}
    4: {1,1}
    6: {1,2}
    8: {1,1,1}
   10: {1,3}
   12: {1,1,2}
   16: {1,1,1,1}
   18: {1,2,2}
   20: {1,1,3}
   22: {1,5}
   24: {1,1,1,2}
   30: {1,2,3}
   32: {1,1,1,1,1}
   34: {1,7}
   36: {1,1,2,2}
   40: {1,1,1,3}
   42: {1,2,4}
   44: {1,1,5}
   48: {1,1,1,1,2}
		

Crossrefs

The LHS is A001221, distinct case of A001222.
The RHS is A370820, for prime factors A303975.
For bigomega on the LHS we have A370802, counted by A371130.
For divisors on the LHS we have A371165, counted by A371172.
Partitions of this type are counted by A371178, strict A371128.
The complement is A371179, counted by A371132.
A000005 counts divisors.
A000041 counts integer partitions, strict A000009.
A008284 counts partitions by length.
A305148 counts partitions without divisors, strict A303362, ranks A316476.

Programs

  • Mathematica
    Select[Range[100],PrimeNu[#]==Length[Union @@ Divisors/@PrimePi/@First/@If[#==1,{},FactorInteger[#]]]&]

Formula

A001221(a(n)) = A370820(a(n)).

A355535 Odd numbers of which it is not possible to choose a different prime factor of each prime index.

Original entry on oeis.org

9, 21, 25, 27, 45, 49, 57, 63, 75, 81, 99, 105, 115, 117, 121, 125, 133, 135, 147, 153, 159, 171, 175, 189, 195, 207, 225, 231, 243, 245, 261, 273, 275, 279, 285, 289, 297, 315, 325, 333, 343, 345, 351, 357, 361, 363, 369, 371, 375, 387, 393, 399, 405, 423
Offset: 1

Views

Author

Gus Wiseman, Jul 22 2022

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The terms together with their prime indices begin:
    9: {2,2}
   21: {2,4}
   25: {3,3}
   27: {2,2,2}
   45: {2,2,3}
   49: {4,4}
   57: {2,8}
   63: {2,2,4}
   75: {2,3,3}
   81: {2,2,2,2}
   99: {2,2,5}
  105: {2,3,4}
For example, the prime indices of 897 are {2,6,9}, of which we can choose prime factors in two ways: (2,2,3) or (2,3,3); but neither of these has all distinct elements, so 897 is in the sequence.
		

Crossrefs

Including evens gives A355529.
The version for all divisors including evens is A355740, zeros of A355739.
Choices of a prime factor of each prime index: A355741, unordered A355744.
A001221 counts distinct prime factors, with sum A001414.
A001222 counts prime factors with multiplicity.
A003963 multiplies together the prime indices of n.
A056239 adds up prime indices, row sums of A112798.
A120383 lists numbers divisible by all of their prime indices.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[100],OddQ[#]&&Select[Tuples[primeMS/@primeMS[#]],UnsameQ@@#&]=={}&]

A370595 Number of integer partitions of n such that only one set can be obtained by choosing a different divisor of each part.

Original entry on oeis.org

1, 1, 0, 1, 2, 0, 3, 2, 4, 3, 4, 5, 8, 9, 8, 13, 12, 17, 16, 27, 28, 33, 36, 39, 50, 58, 65, 75, 93, 94, 112, 125, 148, 170, 190, 209, 250, 273, 305, 341, 403, 432, 484, 561, 623, 708, 765, 873, 977, 1109, 1178, 1367, 1493, 1669, 1824, 2054, 2265, 2521, 2770
Offset: 0

Views

Author

Gus Wiseman, Mar 03 2024

Keywords

Comments

For example, the only choice for the partition (9,9,6,6,6) is {1,2,3,6,9}.

Examples

			The a(1) = 1 through a(15) = 13 partitions (A = 10, B = 11, C = 12, D = 13):
  1  .  21  22  .  33   322  71   441  55    533   B1    553   77    933
            31     51   421  332  522  442   722   444   733   D1    B22
                   321       422  531  721   731   552   751   B21   B31
                             521       4321  4322  4332  931   4433  4443
                                             5321  4431  4432  5441  5442
                                                   5322  5332  6332  5532
                                                   5421  5422  7322  6621
                                                   6321  6322  7421  7332
                                                         7321        7422
                                                                     7521
                                                                     8421
                                                                     9321
                                                                     54321
		

Crossrefs

For no choices we have A370320, complement A239312.
The version for prime factors (not all divisors) is A370594, ranks A370647.
For multiple choices we have A370803, ranks A370811.
These partitions have ranks A370810.
A000005 counts divisors.
A000041 counts integer partitions, strict A000009.
A027746 lists prime factors, A112798 indices, length A001222.
A355731 counts choices of a divisor of each prime index, firsts A355732.
A355741, A355744, A355745 choose prime factors of prime indices.
A370592 counts partitions with choosable prime factors, ranks A368100.
A370593 counts partitions without choosable prime factors, ranks A355529.
A370804 counts non-condensed partitions with no ones, complement A370805.
A370814 counts factorizations with choosable divisors, complement A370813.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],Length[Union[Sort /@ Select[Tuples[Divisors/@#],UnsameQ@@#&]]]==1&]],{n,0,30}]

Extensions

More terms from Jinyuan Wang, Feb 14 2025

A371165 Positive integers with as many divisors (A000005) as distinct divisors of prime indices (A370820).

Original entry on oeis.org

3, 5, 11, 17, 26, 31, 35, 38, 39, 41, 49, 57, 58, 59, 65, 67, 69, 77, 83, 86, 87, 94, 109, 119, 127, 129, 133, 146, 148, 157, 158, 179, 191, 202, 206, 211, 217, 235, 237, 241, 244, 253, 274, 277, 278, 283, 284, 287, 291, 298, 303, 319, 326, 331, 333, 334, 353
Offset: 1

Views

Author

Gus Wiseman, Mar 14 2024

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The terms together with their prime indices begin:
     3: {2}        67: {19}        158: {1,22}
     5: {3}        69: {2,9}       179: {41}
    11: {5}        77: {4,5}       191: {43}
    17: {7}        83: {23}        202: {1,26}
    26: {1,6}      86: {1,14}      206: {1,27}
    31: {11}       87: {2,10}      211: {47}
    35: {3,4}      94: {1,15}      217: {4,11}
    38: {1,8}     109: {29}        235: {3,15}
    39: {2,6}     119: {4,7}       237: {2,22}
    41: {13}      127: {31}        241: {53}
    49: {4,4}     129: {2,14}      244: {1,1,18}
    57: {2,8}     133: {4,8}       253: {5,9}
    58: {1,10}    146: {1,21}      274: {1,33}
    59: {17}      148: {1,1,12}    277: {59}
    65: {3,6}     157: {37}        278: {1,34}
		

Crossrefs

For prime factors instead of divisors on both sides we get A319899.
For prime factors on LHS we get A370802, for distinct prime factors A371177.
The RHS is A370820, for prime factors instead of divisors A303975.
For (greater than) instead of (equal) we get A371166.
For (less than) instead of (equal) we get A371167.
Partitions of this type are counted by A371172.
Other inequalities: A370348 (A371171), A371168 (A371173), A371169, A371170.
A000005 counts divisors.
A001221 counts distinct prime factors.
A027746 lists prime factors, A112798 indices, length A001222.
A239312 counts divisor-choosable partitions, ranks A368110.
A355731 counts choices of a divisor of each prime index, firsts A355732.
A370320 counts non-divisor-choosable partitions, ranks A355740.
A370814 counts divisor-choosable factorizations, complement A370813.

Programs

  • Mathematica
    Select[Range[100],Length[Divisors[#]] == Length[Union@@Divisors/@PrimePi/@First/@If[#==1,{},FactorInteger[#]]]&]

Formula

A000005(a(n)) = A370820(a(n)).

A371168 Positive integers with fewer prime factors (A001222) than distinct divisors of prime indices (A370820).

Original entry on oeis.org

3, 5, 7, 11, 13, 14, 15, 17, 19, 21, 23, 26, 29, 31, 33, 35, 37, 38, 39, 41, 43, 46, 47, 49, 51, 52, 53, 55, 57, 58, 59, 61, 65, 67, 69, 70, 71, 73, 74, 76, 77, 78, 79, 83, 85, 86, 87, 89, 91, 93, 94, 95, 97, 101, 103, 105, 106, 107, 109, 111, 113, 114, 115
Offset: 1

Views

Author

Gus Wiseman, Mar 16 2024

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The prime indices of 105 are {2,3,4}, and there are 3 prime factors (3,5,7) and 4 distinct divisors of prime indices (1,2,3,4), so 105 is in the sequence.
The terms together with their prime indices begin:
     3: {2}      35: {3,4}      59: {17}        86: {1,14}
     5: {3}      37: {12}       61: {18}        87: {2,10}
     7: {4}      38: {1,8}      65: {3,6}       89: {24}
    11: {5}      39: {2,6}      67: {19}        91: {4,6}
    13: {6}      41: {13}       69: {2,9}       93: {2,11}
    14: {1,4}    43: {14}       70: {1,3,4}     94: {1,15}
    15: {2,3}    46: {1,9}      71: {20}        95: {3,8}
    17: {7}      47: {15}       73: {21}        97: {25}
    19: {8}      49: {4,4}      74: {1,12}     101: {26}
    21: {2,4}    51: {2,7}      76: {1,1,8}    103: {27}
    23: {9}      52: {1,1,6}    77: {4,5}      105: {2,3,4}
    26: {1,6}    53: {16}       78: {1,2,6}    106: {1,16}
    29: {10}     55: {3,5}      79: {22}       107: {28}
    31: {11}     57: {2,8}      83: {23}       109: {29}
    33: {2,5}    58: {1,10}     85: {3,7}      111: {2,12}
		

Crossrefs

The opposite version is A370348 counted by A371171.
The version for equality is A370802, counted by A371130, strict A371128.
The RHS is A370820, for prime factors instead of divisors A303975.
For divisors instead of prime factors on the LHS we get A371166.
The complement is counted by A371169.
The weak version is A371170.
Partitions of this type are counted by A371173.
Choosable partitions: A239312 (A368110), A355740 (A370320), A370592 (A368100), A370593 (A355529).
A000005 counts divisors.
A001221 counts distinct prime factors.
A027746 lists prime factors, indices A112798, length A001222.
A355731 counts choices of a divisor of each prime index, firsts A355732.

Programs

  • Mathematica
    Select[Range[100],PrimeOmega[#]
    				

Formula

A001222(a(n)) < A370820(a(n)).
Previous Showing 31-40 of 91 results. Next