A035544 Number of partitions of n with equal number of parts congruent to each of 1 and 3 (mod 4).
1, 0, 1, 0, 3, 0, 4, 0, 10, 0, 13, 0, 28, 0, 37, 0, 72, 0, 96, 0, 172, 0, 230, 0, 391, 0, 522, 0, 846, 0, 1129, 0, 1766, 0, 2348, 0, 3564, 0, 4722, 0, 6992, 0, 9226, 0, 13371, 0, 17568, 0, 25006, 0, 32708, 0, 45817, 0, 59668, 0, 82430, 0, 106874, 0, 145830, 0, 188260, 0
Offset: 0
Keywords
Examples
From _Gus Wiseman_, Oct 12 2022: (Start) The a(0) = 1 through a(8) = 10 partitions: () . (2) . (4) . (6) . (8) (22) (42) (44) (31) (222) (53) (321) (62) (71) (422) (431) (2222) (3221) (3311) (End)
Crossrefs
Programs
-
Mathematica
skats[f_]:=Sum[f[[i]]*(-1)^(1+Ceiling[(i+1)/2]),{i,Length[f]}]; Table[Length[Select[IntegerPartitions[n],skats[#]==0&]],{n,0,30}] (* Gus Wiseman,Oct 12 2022 *)
Extensions
More terms from David W. Wilson
Comments