cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 101-110 of 132 results. Next

A362617 Numbers whose prime factorization has both (1) even length, and (2) unequal middle parts.

Original entry on oeis.org

6, 10, 14, 15, 21, 22, 26, 33, 34, 35, 36, 38, 39, 46, 51, 55, 57, 58, 60, 62, 65, 69, 74, 77, 82, 84, 85, 86, 87, 91, 93, 94, 95, 100, 106, 111, 115, 118, 119, 122, 123, 129, 132, 133, 134, 140, 141, 142, 143, 145, 146, 150, 155, 156, 158, 159, 161, 166, 177
Offset: 1

Views

Author

Gus Wiseman, May 10 2023

Keywords

Comments

Also numbers n whose median prime factor is not a prime factor of n, where the median of a multiset is either the middle part (for odd length), or the average of the two middle parts (for even length).

Examples

			The prime factorization of 60 is 2*2*3*5, with middle parts (2,3), so 60 is in the sequence.
		

Crossrefs

Partitions of this type are counted by A238479.
The complement (without 1) is A362618, counted by A238478.
A027746 lists prime factors, A112798 indices, length A001222, sum A056239.
A359893 counts partitions by median.
A359908 ranks partitions with integer median, counted by A325347.
A359912 ranks partitions with non-integer median, counted by A307683.
A362605 ranks partitions with more than one mode, counted by A362607.
A362611 counts modes in prime factorization, triangle version A362614.
A362621 ranks partitions with median equal to maximum, counted by A053263.
A362622 ranks partitions whose maximum is a middle part, counted by A237824.
Contains A006881 and (except for 1) A030229.

Programs

  • Maple
    filter:= proc(n) local F,m;
      F:= sort(map(t -> t[1]$t[2],ifactors(n)[2]));
      m:= nops(F);
      m::even and F[m/2] <> F[m/2+1]
    end proc:
    select(filter, [$2..200]); # Robert Israel, Dec 15 2023
  • Mathematica
    prifacs[n_]:=If[n==1,{},Flatten[ConstantArray@@@FactorInteger[n]]];
    Select[Range[2,100],FreeQ[prifacs[#],Median[prifacs[#]]]&]

A363124 Number of integer partitions of n with more than one non-mode.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 1, 3, 6, 9, 19, 28, 46, 65, 98, 132, 190, 251, 348, 451, 603, 768, 1014, 1273, 1648, 2052, 2604, 3233, 4062, 4984, 6203, 7582, 9333, 11349, 13890, 16763, 20388, 24528, 29613, 35502, 42660, 50880, 60883, 72376, 86158, 102120, 121133, 143010
Offset: 0

Views

Author

Gus Wiseman, May 16 2023

Keywords

Comments

A non-mode in a multiset is an element that appears fewer times than at least one of the others. For example, the non-modes in {a,a,b,b,b,c,d,d,d} are {a,c}.

Examples

			The a(7) = 1 through a(10) = 9 partitions:
  (3211)  (3221)   (3321)    (5221)
          (4211)   (4221)    (5311)
          (32111)  (4311)    (6211)
                   (5211)    (32221)
                   (42111)   (43111)
                   (321111)  (52111)
                             (322111)
                             (421111)
                             (3211111)
		

Crossrefs

For middle parts instead of non-modes we have A238479, complement A238478.
For modes instead of non-modes we have A362607, complement A362608.
For co-modes instead of non-modes we have A362609, complement A362610.
The complement is counted by A363125.
For non-co-modes instead of non-modes we have A363128, complement A363129.
A000041 counts integer partitions.
A008284/A058398 count partitions by length/mean.
A362611 counts modes in prime factorization, triangle A362614.
A363127 counts non-modes in prime factorization, triangle A363126.

Programs

  • Mathematica
    nmsi[ms_]:=Select[Union[ms],Count[ms,#]1&]],{n,0,30}]

A363125 Number of integer partitions of n with a unique non-mode.

Original entry on oeis.org

0, 0, 0, 0, 1, 3, 3, 8, 9, 13, 18, 24, 24, 36, 41, 45, 57, 68, 72, 87, 95, 105, 131, 136, 149, 164, 199, 203, 232, 246, 276, 298, 335, 347, 409, 399, 467, 488, 567, 569, 636, 662, 757, 767, 878, 887, 1028, 1030, 1168, 1181, 1342, 1388, 1558, 1570, 1789, 1791
Offset: 0

Views

Author

Gus Wiseman, May 16 2023

Keywords

Comments

A non-mode in a multiset is an element that appears fewer times than at least one of the others. For example, the non-modes in {a,a,b,b,b,c,d,d,d} are {a,c}.

Examples

			The a(4) = 1 through a(9) = 13 partitions:
  (211)  (221)   (411)    (322)     (332)      (441)
         (311)   (3111)   (331)     (422)      (522)
         (2111)  (21111)  (511)     (611)      (711)
                          (2221)    (5111)     (3222)
                          (4111)    (22211)    (6111)
                          (22111)   (41111)    (22221)
                          (31111)   (221111)   (32211)
                          (211111)  (311111)   (33111)
                                    (2111111)  (51111)
                                               (411111)
                                               (2211111)
                                               (3111111)
                                               (21111111)
		

Crossrefs

For middle parts instead of non-modes we have A238478, complement A238479.
For modes instead of non-modes we have A362608, complement A362607.
For co-modes instead of non-modes we have A362610, complement A362609.
The complement is counted by A363124.
For non-co-modes instead of non-modes we have A363129, complement A363128.
A000041 counts integer partitions.
A008284/A058398 count partitions by length/mean.
A362611 counts modes in prime factorization, triangle A362614.
A363127 counts non-modes in prime factorization, triangle A363126.

Programs

  • Mathematica
    nmsi[ms_]:=Select[Union[ms],Count[ms,#]
    				

A363128 Number of integer partitions of n with more than one non-co-mode.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 3, 6, 9, 18, 25, 44, 60, 96, 122, 188, 243, 344, 442, 615, 769, 1047, 1308, 1722, 2150, 2791, 3430, 4405, 5401, 6803, 8326, 10408, 12608, 15641, 18906, 23179, 27935, 34061, 40778, 49451, 59038, 71060, 84604, 101386, 120114, 143358
Offset: 0

Views

Author

Gus Wiseman, May 18 2023

Keywords

Comments

We define a non-co-mode in a multiset to be an element that appears more times than at least one of the others. For example, the non-co-modes in {a,a,b,b,b,c,d,d,d} are {a,b,d}.

Examples

			The a(9) = 1 through a(12) = 9 partitions:
  (32211)  (33211)   (33221)    (43311)
           (42211)   (52211)    (44211)
           (322111)  (322211)   (62211)
                     (332111)   (422211)
                     (422111)   (522111)
                     (3221111)  (3222111)
                                (3321111)
                                (4221111)
                                (32211111)
		

Crossrefs

For parts instead of multiplicities we have
For middles instead of non-co-modes we have A238479, complement A238478.
For modes instead of non-co-modes we have A362607, complement A362608.
For co-modes instead of non-co-modes we have A362609, complement A362610.
For non-modes instead of non-co-modes we have A363124, complement A363125.
The complement is counted by A363129.
A000041 counts integer partitions.
A008284/A058398 count partitions by length/mean.
A362611 counts modes in prime factorization, triangle A362614.
A362613 counts co-modes in prime factorization, triangle A362615.
A363127 counts non-modes in prime factorization, triangle A363126.
A363131 counts non-co-modes in prime factorization, triangle A363130.

Programs

  • Mathematica
    ncomsi[ms_]:=Select[Union[ms],Count[ms,#]>Min@@Length/@Split[ms]&];
    Table[Length[Select[IntegerPartitions[n],Length[ncomsi[#]]>1&]],{n,0,30}]

A363129 Number of integer partitions of n with a unique non-co-mode.

Original entry on oeis.org

0, 0, 0, 0, 1, 3, 3, 9, 12, 18, 24, 37, 43, 64, 81, 99, 129, 162, 201, 247, 303, 364, 457, 535, 653, 765, 943, 1085, 1315, 1517, 1830, 2096, 2516, 2877, 3432, 3881, 4622, 5235, 6189, 7003, 8203, 9261, 10859, 12199, 14216, 15985, 18544, 20777, 24064, 26897
Offset: 0

Views

Author

Gus Wiseman, May 18 2023

Keywords

Comments

We define a non-co-mode in a multiset to be an element that appears more times than at least one of the others. For example, the non-co-modes in {a,a,b,b,b,c,d,d,d} are {a,b,d}.

Examples

			The a(4) = 1 through a(9) = 18 partitions:
  (211)  (221)   (411)    (322)     (332)      (441)
         (311)   (3111)   (331)     (422)      (522)
         (2111)  (21111)  (511)     (611)      (711)
                          (2221)    (3221)     (3222)
                          (3211)    (4211)     (3321)
                          (4111)    (5111)     (4221)
                          (22111)   (22211)    (4311)
                          (31111)   (32111)    (5211)
                          (211111)  (41111)    (6111)
                                    (221111)   (22221)
                                    (311111)   (33111)
                                    (2111111)  (42111)
                                               (51111)
                                               (321111)
                                               (411111)
                                               (2211111)
                                               (3111111)
                                               (21111111)
		

Crossrefs

For parts instead of multiplicities we have A002133.
For middles instead of non-co-modes we have A238478, complement A238479.
For modes instead of non-co-modes we have A362608, complement A362607.
For co-modes instead of non-co-modes we have A362610, complement A362609.
For non-modes instead of non-co-modes we have A363125, complement A363124.
The complement is counted by A363128.
A000041 counts integer partitions.
A008284/A058398 count partitions by length/mean.
A362611 counts modes in prime factorization, triangle A362614.
A362613 counts co-modes in prime factorization, triangle A362615.
A363127 counts non-modes in prime factorization, triangle A363126.
A363131 counts non-co-modes in prime factorization, triangle A363130.

Programs

  • Mathematica
    ncomsi[ms_]:=Select[Union[ms],Count[ms,#]>Min@@Length/@Split[ms]&];
    Table[Length[Select[IntegerPartitions[n],Length[ncomsi[#]]==1&]],{n,0,30}]

A363721 Number of odd-length integer partitions of n satisfying (mean) = (median) = (mode), assuming there is a unique mode.

Original entry on oeis.org

1, 1, 2, 1, 2, 2, 2, 1, 3, 3, 2, 2, 2, 5, 7, 1, 2, 8, 2, 9, 16, 11, 2, 2, 15, 16, 37, 33, 2, 44, 2, 1, 79, 33, 103, 127, 2, 47, 166, 39, 2, 214, 2, 384, 738, 90, 2, 2, 277, 185, 631, 1077, 2, 1065, 1560, 477, 1156, 223, 2, 2863
Offset: 1

Views

Author

Gus Wiseman, Jun 21 2023

Keywords

Comments

The median of an odd-length partition is the middle part.
A mode in a multiset is an element that appears at least as many times as each of the others. For example, the modes of {a,a,b,b,b,c,d,d,d} are {b,d}.

Examples

			The a(n) partitions for n = {1, 3, 9, 14, 15, 18, 20, 22} (A..M = 10..22):
  1  3    9          E        F                I          K      M
     111  333        2222222  555              666        44444  22222222222
          111111111  3222221  33333            222222222  54443  32222222221
                     3322211  43332            322222221  64442  33222222211
                     4222211  53331            332222211  65441  33322222111
                              63321            422222211  74432  42222222211
                              111111111111111  432222111  74441  43222222111
                                               522222111  84431  44222221111
                                                          94421  52222222111
                                                                 53222221111
                                                                 62222221111
		

Crossrefs

All odd-length partitions are counted by A027193.
For just (mean) = (median) we have A359895, also A240219, A359899, A359910.
For just (mean) != (median) we have A359896, also A359894, A359900.
Allowing any length gives A363719, ranks A363727, non-constant A363728.
A000041 counts partitions, strict A000009.
A008284 counts partitions by length (or negative mean), strict A008289.
A359893 and A359901 count partitions by median, odd-length A359902.
A362608 counts partitions with a unique mode.
A363726 counts odd-length partitions with a unique mode.

Programs

  • Mathematica
    modes[ms_]:=Select[Union[ms],Count[ms,#]>=Max@@Length/@Split[ms]&];
    Table[Length[Select[IntegerPartitions[n],OddQ[Length[#]]&&{Mean[#]}=={Median[#]}==modes[#]&]],{n,30}]

A363726 Number of odd-length integer partitions of n with a unique mode.

Original entry on oeis.org

0, 1, 1, 2, 2, 4, 4, 7, 8, 12, 14, 22, 26, 39, 50, 67, 86, 118, 148, 196, 245, 315, 394, 507, 629, 792, 979, 1231, 1503, 1873, 2286, 2814, 3424, 4194, 5073, 6183, 7449, 9014, 10827, 13055, 15603, 18713, 22308, 26631, 31646, 37641, 44559, 52835, 62374, 73671
Offset: 0

Views

Author

Gus Wiseman, Jun 27 2023

Keywords

Comments

A mode in a multiset is an element that appears at least as many times as each of the others. For example, the modes in {a,a,b,b,b,c,d,d,d} are {b,d}.

Examples

			The a(1) = 1 through a(8) = 8 partitions:
  (1)  (2)  (3)    (4)    (5)      (6)      (7)        (8)
            (111)  (211)  (221)    (222)    (322)      (332)
                          (311)    (411)    (331)      (422)
                          (11111)  (21111)  (511)      (611)
                                            (22111)    (22211)
                                            (31111)    (32111)
                                            (1111111)  (41111)
                                                       (2111111)
		

Crossrefs

The constant case is A001227.
Allowing multiple modes gives A027193, ranks A026424.
Allowing any length gives A362608, ranks A356862.
A000041 counts partitions, strict A000009.
A008284 counts partitions by length (or decreasing mean), strict A008289.
A359893 and A359901 count partitions by median.

Programs

  • Mathematica
    modes[ms_]:=Select[Union[ms],Count[ms,#]>=Max@@Length/@Split[ms]&];
    Table[Length[Select[IntegerPartitions[n], Length[modes[#]]==1&&OddQ[Length[#]]&]],{n,30}]

A360456 Number of integer partitions of n for which the parts have the same median as the multiplicities.

Original entry on oeis.org

1, 1, 0, 0, 1, 0, 0, 1, 2, 5, 7, 10, 14, 21, 28, 36, 51, 64, 84, 106, 132, 165, 202, 252, 311, 391, 473, 579, 713, 868, 1069, 1303, 1617, 1954, 2404, 2908, 3556, 4282, 5200, 6207, 7505, 8934, 10700, 12717, 15165, 17863, 21222, 24976, 29443, 34523, 40582, 47415
Offset: 0

Views

Author

Gus Wiseman, Feb 10 2023

Keywords

Comments

The median of a multiset is either the middle part (for odd length), or the average of the two middle parts (for even length).

Examples

			The a(1) = 1 through a(11) = 10 partitions:
  1   .  .  22   .  .  2221   3311    333      4222      5222
                              32111   3222     33211     33221
                                      32211    42211     52211
                                      42111    43111     53111
                                      321111   52111     62111
                                               421111    322211
                                               3211111   431111
                                                         521111
                                                         4211111
                                                         32111111
		

Crossrefs

For mean instead of median: A360068, ranks A359903.
For distinct parts instead of multiplicities: A360245, ranks A360249.
These partitions have ranks A360454.
For distinct parts instead of parts: A360455, ranks A360453.
A000041 counts integer partitions, strict A000009.
A008284 counts partitions by number of parts.
A325347 counts partitions w/ integer median, strict A359907, ranks A359908.
A359893 and A359901 count partitions by median, odd-length A359902.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n], Median[Length/@Split[#]]==Median[#]&]],{n,0,30}]

A360954 Number of finite sets of positive integers whose right half (exclusive) sums to n.

Original entry on oeis.org

1, 0, 1, 3, 6, 10, 15, 22, 29, 41, 50, 70, 81, 113, 126, 176, 191, 264, 286, 389, 413, 569, 595, 798, 861, 1121, 1187, 1585, 1653, 2132, 2334, 2906, 3111, 4006, 4234, 5252, 5818, 6995, 7620, 9453, 10102, 12165, 13663, 15940, 17498, 21127, 22961, 26881, 30222, 34678, 38569
Offset: 0

Views

Author

Gus Wiseman, Mar 09 2023

Keywords

Examples

			The a(2) = 1 through a(7) = 22 sets:
  {1,2}  {1,3}    {1,4}    {1,5}    {1,6}    {1,7}
         {2,3}    {2,4}    {2,5}    {2,6}    {2,7}
         {1,2,3}  {3,4}    {3,5}    {3,6}    {3,7}
                  {1,2,4}  {4,5}    {4,6}    {4,7}
                  {1,3,4}  {1,2,5}  {5,6}    {5,7}
                  {2,3,4}  {1,3,5}  {1,2,6}  {6,7}
                           {1,4,5}  {1,3,6}  {1,2,7}
                           {2,3,5}  {1,4,6}  {1,3,7}
                           {2,4,5}  {1,5,6}  {1,4,7}
                           {3,4,5}  {2,3,6}  {1,5,7}
                                    {2,4,6}  {1,6,7}
                                    {2,5,6}  {2,3,7}
                                    {3,4,6}  {2,4,7}
                                    {3,5,6}  {2,5,7}
                                    {4,5,6}  {2,6,7}
                                             {3,4,7}
                                             {3,5,7}
                                             {3,6,7}
                                             {4,5,7}
                                             {4,6,7}
                                             {5,6,7}
                                             {1,2,3,4}
For example, the set y = {1,2,3,4} has right half (exclusive) {3,4}, with sum 7, so y is counted under a(7).
		

Crossrefs

The version for multisets is A360673, inclusive A360671.
The inclusive version is A360955.
First for prime indices, second for partitions, third for prime factors:
- A360676 gives left sum (exclusive), counted by A360672, product A361200.
- A360677 gives right sum (exclusive), counted by A360675, product A361201.
- A360678 gives left sum (inclusive), counted by A360675, product A347043.
- A360679 gives right sum (inclusive), counted by A360672, product A347044.

Programs

  • Mathematica
    Table[Length[Select[Join@@IntegerPartitions/@Range[0,3*k],UnsameQ@@#&&Total[Take[#,Floor[Length[#]/2]]]==k&]],{k,0,15}]
  • PARI
    \\ P(n,k) is A072233(n,k).
    P(n,k)=polcoef(1/prod(k=1, k, 1 - x^k + O(x*x^n)), n)
    a(n)=if(n==0, 1, sum(w=1, sqrt(n), my(t=binomial(w,2)); sum(h=w+1, (n-t)\w, binomial(h, w+1) * P(n-w*h-t, w-1)))) \\ Andrew Howroyd, Mar 13 2023

Formula

a(n) = Sum_{w>=1} Sum_{h=w+1..floor((n-binomial(w,2))/w)} binomial(h,w+1) * A072233(n - w*h - binomial(w,2), w-1) for n > 0. - Andrew Howroyd, Mar 13 2023

Extensions

Terms a(16) and beyond from Andrew Howroyd, Mar 13 2023

A360955 Number of finite sets of positive integers whose right half (inclusive) sums to n.

Original entry on oeis.org

1, 1, 2, 3, 4, 6, 7, 11, 12, 19, 20, 31, 33, 49, 51, 77, 79, 112, 124, 165, 177, 247, 260, 340, 388, 480, 533, 693, 747, 925, 1078, 1271, 1429, 1772, 1966, 2331, 2705, 3123, 3573, 4245, 4737, 5504, 6424, 7254, 8256, 9634, 10889, 12372, 14251, 16031, 18379
Offset: 0

Views

Author

Gus Wiseman, Mar 09 2023

Keywords

Examples

			The a(1) = 1 through a(8) = 12 sets:
  {1}  {2}    {3}    {4}    {5}      {6}      {7}        {8}
       {1,2}  {1,3}  {1,4}  {1,5}    {1,6}    {1,7}      {1,8}
              {2,3}  {2,4}  {2,5}    {2,6}    {2,7}      {2,8}
                     {3,4}  {3,5}    {3,6}    {3,7}      {3,8}
                            {4,5}    {4,6}    {4,7}      {4,8}
                            {1,2,3}  {5,6}    {5,7}      {5,8}
                                     {1,2,4}  {6,7}      {6,8}
                                              {1,2,5}    {7,8}
                                              {1,3,4}    {1,2,6}
                                              {2,3,4}    {1,3,5}
                                              {1,2,3,4}  {2,3,5}
                                                         {1,2,3,5}
For example, the set y = {2,3,5} has right half (inclusive) {3,5}, with sum 8, so y is counted under a(8).
		

Crossrefs

The version for multisets is A360671, exclusive A360673.
The exclusive version is A360954.
First for prime indices, second for partitions, third for prime factors:
- A360676 gives left sum (exclusive), counted by A360672, product A361200.
- A360677 gives right sum (exclusive), counted by A360675, product A361201.
- A360678 gives left sum (inclusive), counted by A360675, product A347043.
- A360679 gives right sum (inclusive), counted by A360672, product A347044.

Programs

  • Mathematica
    Table[Length[Select[Join@@IntegerPartitions/@Range[0,3*k], UnsameQ@@#&&Total[Take[#,Ceiling[Length[#]/2]]]==k&]],{k,0,15}]
  • PARI
    \\ P(n,k) is A072233(n,k).
    P(n,k)=polcoef(1/prod(k=1, k, 1 - x^k + O(x*x^n)), n)
    a(n)=if(n==0, 1, sum(w=1, sqrt(n), my(t=binomial(w,2)); sum(h=w, (n-t)\w, binomial(h, w) * P(n-w*h-t, w-1)))) \\ Andrew Howroyd, Mar 13 2023

Formula

a(n) = Sum_{w>=1} Sum_{h=w..floor((n-binomial(w,2))/w)} binomial(h,w) * A072233(n - w*h - binomial(w,2), w-1) for n > 0. - Andrew Howroyd, Mar 13 2023

Extensions

Terms a(16) and beyond from Andrew Howroyd, Mar 13 2023
Previous Showing 101-110 of 132 results. Next