cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-17 of 17 results.

A360454 Numbers for which the prime multiplicities (or sorted signature) have the same median as the prime indices.

Original entry on oeis.org

1, 2, 9, 54, 100, 120, 125, 135, 168, 180, 189, 240, 252, 264, 280, 297, 300, 312, 336, 351, 396, 408, 440, 450, 456, 459, 468, 480, 513, 520, 528, 540, 552, 560, 588, 612, 616, 621, 624, 672, 680, 684, 696, 728, 744, 756, 760, 783, 816, 828, 837, 880, 882
Offset: 1

Views

Author

Gus Wiseman, Feb 10 2023

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
The median of a multiset is either the middle part (for odd length), or the average of the two middle parts (for even length).

Examples

			The terms together with their prime indices begin:
    1: {}
    2: {1}
    9: {2,2}
   54: {1,2,2,2}
  100: {1,1,3,3}
  120: {1,1,1,2,3}
  125: {3,3,3}
  135: {2,2,2,3}
  168: {1,1,1,2,4}
  180: {1,1,2,2,3}
  189: {2,2,2,4}
  240: {1,1,1,1,2,3}
For example, the prime indices of 336 are {1,1,1,1,2,4} with median 1 and multiplicities {1,1,4} with median 1, so 336 is in the sequence.
		

Crossrefs

For mean instead of median we have A359903, counted by A360068.
For distinct indices instead of indices we have A360453, counted by A360455.
For distinct indices instead of multiplicities: A360249, counted by A360245.
These partitions are counted by A360456.
A088529/A088530 gives mean of prime signature A124010.
A112798 lists prime indices, length A001222, sum A056239.
A240219 counts partitions with mean equal to median, ranked by A359889.
A325347 counts partitions w/ integer median, strict A359907, ranks A359908.
A326567/A326568 gives mean of prime indices.
A326619/A326620 gives mean of distinct prime indices.
A359893 and A359901 count partitions by median.
A359894 counts partitions with mean different from median, ranks A359890.
A360005 gives median of prime indices (times two).

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[1000],Median[prix[#]]==Median[Length/@Split[prix[#]]]&]

A360686 Number of integer partitions of n whose distinct parts have integer median.

Original entry on oeis.org

1, 2, 2, 4, 3, 8, 7, 16, 17, 31, 35, 60, 67, 99, 121, 170, 200, 270, 328, 436, 522, 674, 828, 1061, 1292, 1626, 1983, 2507, 3035, 3772, 4582, 5661, 6801, 8358, 10059, 12231, 14627, 17702, 21069, 25423, 30147, 36100, 42725, 50936, 60081, 71388, 84007, 99408
Offset: 1

Views

Author

Gus Wiseman, Feb 20 2023

Keywords

Comments

The median of a multiset is either the middle part (for odd length), or the average of the two middle parts (for even length).

Examples

			The a(1) = 1 through a(8) = 16 partitions:
  (1)  (2)   (3)    (4)     (5)      (6)       (7)        (8)
       (11)  (111)  (22)    (311)    (33)      (331)      (44)
                    (31)    (11111)  (42)      (421)      (53)
                    (1111)           (51)      (511)      (62)
                                     (222)     (3211)     (71)
                                     (321)     (31111)    (422)
                                     (3111)    (1111111)  (431)
                                     (111111)             (521)
                                                          (2222)
                                                          (3221)
                                                          (3311)
                                                          (4211)
                                                          (5111)
                                                          (32111)
                                                          (311111)
                                                          (11111111)
For example, the partition y = (7,4,2,1,1) has distinct parts {1,2,4,7} with median 3, so y is counted under a(15).
		

Crossrefs

For all parts: A325347, strict A359907, ranks A359908, complement A307683.
For mean instead of median: A360241, ranks A326621.
These partitions have ranks A360550, complement A360551.
For multiplicities instead of distinct parts: A360687.
The complement is counted by A360689.
A000041 counts integer partitions, strict A000009.
A000975 counts subsets with integer median.
A027193 counts odd-length partitions, strict A067659, ranks A026424.
A067538 counts partitions with integer mean, strict A102627, ranks A316413.
A116608 counts partitions by number of distinct parts.
A359893 and A359901 count partitions by median, odd-length A359902.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n], IntegerQ[Median[Union[#]]]&]],{n,30}]

A360455 Number of integer partitions of n for which the distinct parts have the same median as the multiplicities.

Original entry on oeis.org

1, 1, 0, 0, 2, 1, 1, 0, 2, 2, 5, 8, 10, 14, 20, 19, 26, 31, 35, 41, 55, 65, 85, 102, 118, 151, 181, 201, 236, 281, 313, 365, 424, 495, 593, 688, 825, 978, 1181, 1374, 1650, 1948, 2323, 2682, 3175, 3680, 4314, 4930, 5718, 6546, 7532, 8557, 9777, 11067, 12622
Offset: 0

Views

Author

Gus Wiseman, Feb 10 2023

Keywords

Comments

The median of a multiset is either the middle part (for odd length), or the average of the two middle parts (for even length).

Examples

			The a(1) = 1 through a(11) = 8 partitions:
  1   .  .  22    221   3111   .  3311    333     3331     32222
            211                   41111   32211   33211    33221
                                                  42211    44111
                                                  322111   52211
                                                  511111   322211
                                                           332111
                                                           422111
                                                           3221111
		

Crossrefs

For mean instead of median: A114638, ranks A324570.
For parts instead of multiplicities: A360245, ranks A360249.
These partitions have ranks A360453.
For parts instead of distinct parts: A360456, ranks A360454.
A000041 counts integer partitions, strict A000009.
A116608 counts partitions by number of distinct parts.
A325347 counts partitions w/ integer median, strict A359907, ranks A359908.
A359893 and A359901 count partitions by median, odd-length A359902.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n], Median[Length/@Split[#]]==Median[Union[#]]&]],{n,0,30}]

A360456 Number of integer partitions of n for which the parts have the same median as the multiplicities.

Original entry on oeis.org

1, 1, 0, 0, 1, 0, 0, 1, 2, 5, 7, 10, 14, 21, 28, 36, 51, 64, 84, 106, 132, 165, 202, 252, 311, 391, 473, 579, 713, 868, 1069, 1303, 1617, 1954, 2404, 2908, 3556, 4282, 5200, 6207, 7505, 8934, 10700, 12717, 15165, 17863, 21222, 24976, 29443, 34523, 40582, 47415
Offset: 0

Views

Author

Gus Wiseman, Feb 10 2023

Keywords

Comments

The median of a multiset is either the middle part (for odd length), or the average of the two middle parts (for even length).

Examples

			The a(1) = 1 through a(11) = 10 partitions:
  1   .  .  22   .  .  2221   3311    333      4222      5222
                              32111   3222     33211     33221
                                      32211    42211     52211
                                      42111    43111     53111
                                      321111   52111     62111
                                               421111    322211
                                               3211111   431111
                                                         521111
                                                         4211111
                                                         32111111
		

Crossrefs

For mean instead of median: A360068, ranks A359903.
For distinct parts instead of multiplicities: A360245, ranks A360249.
These partitions have ranks A360454.
For distinct parts instead of parts: A360455, ranks A360453.
A000041 counts integer partitions, strict A000009.
A008284 counts partitions by number of parts.
A325347 counts partitions w/ integer median, strict A359907, ranks A359908.
A359893 and A359901 count partitions by median, odd-length A359902.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n], Median[Length/@Split[#]]==Median[#]&]],{n,0,30}]

A360682 Number of integer partitions of n of length > 2 whose second differences have median 0.

Original entry on oeis.org

0, 0, 0, 1, 1, 1, 5, 4, 10, 13, 18, 23, 44, 44, 72, 98, 132, 162, 241, 277, 394, 497, 643, 800, 1076, 1287, 1660, 2078, 2604, 3192, 4065, 4892, 6113, 7490, 9166, 11110, 13717, 16429, 20033, 24201, 29143, 34945, 42251, 50219, 60253, 71852, 85503, 101501, 120899
Offset: 0

Views

Author

Gus Wiseman, Feb 19 2023

Keywords

Comments

The median of a multiset is either the middle part (for odd length), or the average of the two middle parts (for even length).

Examples

			The a(3) = 1 through a(9) = 13 partitions:
  (111)  (1111)  (11111)  (222)     (22111)    (2222)      (333)
                          (321)     (31111)    (3221)      (432)
                          (2211)    (211111)   (3311)      (531)
                          (21111)   (1111111)  (22211)     (22221)
                          (111111)             (32111)     (33111)
                                               (41111)     (51111)
                                               (221111)    (222111)
                                               (311111)    (321111)
                                               (2111111)   (411111)
                                               (11111111)  (2211111)
                                                           (3111111)
                                                           (21111111)
                                                           (111111111)
		

Crossrefs

For first differences we have A237363.
For sum instead of median we have A360683.
For mean instead of median we have A360683 - A008619.
A000041 counts integer partitions, strict A000009.
A008284 counts partitions by number of parts.
A325347 counts partitions with integer median, strict A359907.
A359893 and A359901 count partitions by median, odd-length A359902.
A360005 gives median of prime indices (times two).

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],Median[Differences[#,2]]==0&]],{n,0,30}]

A360689 Number of integer partitions of n whose distinct parts have non-integer median.

Original entry on oeis.org

0, 0, 1, 1, 4, 3, 8, 6, 13, 11, 21, 17, 34, 36, 55, 61, 97, 115, 162, 191, 270, 328, 427, 514, 666, 810, 1027, 1211, 1530, 1832, 2260, 2688, 3342, 3952, 4824, 5746, 7010, 8313, 10116, 11915, 14436, 17074, 20536, 24239, 29053, 34170, 40747, 47865, 56830, 66621
Offset: 1

Views

Author

Gus Wiseman, Feb 22 2023

Keywords

Comments

The median of a multiset is either the middle part (for odd length), or the average of the two middle parts (for even length).

Examples

			The a(1) = 0 through a(9) = 13 partitions:
  .  .  (21)  (211)  (32)    (411)    (43)      (332)      (54)
                     (41)    (2211)   (52)      (611)      (63)
                     (221)   (21111)  (61)      (22211)    (72)
                     (2111)           (322)     (41111)    (81)
                                      (2221)    (221111)   (441)
                                      (4111)    (2111111)  (522)
                                      (22111)              (3222)
                                      (211111)             (6111)
                                                           (22221)
                                                           (222111)
                                                           (411111)
                                                           (2211111)
                                                           (21111111)
For example, the partition y = (5,3,3,2,1,1) has distinct parts {1,2,3,5}, with median 5/2, so y is counted under a(15).
		

Crossrefs

For not just distinct parts: A307683, complement A325347, ranks A359912.
These partitions have ranks A360551.
The complement is counted by A360686, strict A359907, ranks A360550.
For multiplicities instead of distinct parts we have A360690, ranks A360554.
A000041 counts integer partitions, strict A000009.
A116608 counts partitions by number of distinct parts.
A359893 and A359901 count partitions by median, odd-length A359902.
A360457 gives median of distinct prime indices (times 2).

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],!IntegerQ[Median[Union[#]]]&]],{n,30}]

A363220 Number of integer partitions of n whose conjugate has the same median.

Original entry on oeis.org

1, 0, 1, 1, 1, 3, 3, 8, 8, 12, 12, 15, 21, 27, 36, 49, 65, 85, 112, 149, 176, 214, 257, 311, 378, 470, 572, 710, 877, 1080, 1322, 1637, 1983, 2416, 2899, 3465, 4107, 4891, 5763, 6820, 8071, 9542, 11289, 13381, 15808, 18710, 22122, 26105, 30737, 36156, 42377
Offset: 1

Views

Author

Gus Wiseman, May 29 2023

Keywords

Comments

The median of a multiset is either the middle part (for odd length), or the average of the two middle parts (for even length).

Examples

			The partition y = (4,3,1,1) has median 2, and its conjugate (4,2,2,1) also has median 2, so y is counted under a(9).
The a(1) = 1 through a(9) = 8 partitions:
  (1)  .  (21)  (22)  (311)  (321)   (511)    (332)     (333)
                             (411)   (4111)   (422)     (711)
                             (3111)  (31111)  (611)     (4221)
                                              (3311)    (4311)
                                              (4211)    (6111)
                                              (5111)    (51111)
                                              (41111)   (411111)
                                              (311111)  (3111111)
		

Crossrefs

For mean instead of median we have A047993.
For product instead of median we have A325039, ranks A325040.
For union instead of conjugate we have A360245, complement A360244.
Median of conjugate by rank is A363219.
These partitions are ranked by A363261.
A000700 counts self-conjugate partitions, ranks A088902.
A046682 and A352487-A352490 pertain to excedance set.
A122111 represents partition conjugation.
A325347 counts partitions with integer median.
A330644 counts non-self-conjugate partitions (twice A000701), ranks A352486.
A352491 gives n minus Heinz number of conjugate.

Programs

  • Mathematica
    conj[y_]:=If[Length[y]==0,y,Table[Length[Select[y,#>=k&]],{k,1,Max[y]}]];
    Table[Length[Select[IntegerPartitions[n],Median[#]==Median[conj[#]]&]],{n,30}]
Previous Showing 11-17 of 17 results.