cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 51-60 of 80 results. Next

A088528 Let m = number of ways of partitioning n into parts using all the parts of a subset of {1, 2, ..., n-1} whose sum of all parts of a subset is less than n; a(n) gives number of different subsets of {1, 2, ..., n-1} whose m is 0.

Original entry on oeis.org

0, 0, 1, 1, 3, 3, 6, 6, 10, 12, 17, 18, 26, 30, 40, 44, 58, 66, 84, 95, 120, 135, 166, 186, 230, 257, 314, 350, 421, 476, 561, 626, 749, 831, 986, 1095, 1276, 1424, 1666, 1849, 2138, 2388, 2741, 3042, 3522, 3879, 4441, 4928, 5617, 6222, 7084, 7802, 8852, 9800
Offset: 1

Views

Author

Naohiro Nomoto, Nov 16 2003

Keywords

Comments

Note that {2, 3} is counted for n = 6 because although 6 = 2+2+2 = 3+3, there is no partition that includes both 2 and 3. - David Wasserman, Aug 09 2005
Said differently, a(n) is the number of finite nonempty sets of positive integers with sum < n that cannot be linearly combined using all positive coefficients to obtain n. - Gus Wiseman, Sep 10 2023

Examples

			a(5)=3 because there are three different subsets, {2}, {3} & {4}; a(6)=3 because there are three different subsets, {4}, {5} & {2,3}.
From _Gus Wiseman_, Sep 10 2023: (Start)
The set {3,5} is not counted under a(8) because 1*3 + 1*5 = 8, but it is counted under a(9) and a(10), and it is not counted under a(11) because 2*3 + 1*5 = 11.
The a(3) = 1 through a(11) = 17 subsets:
  {2}  {3}  {2}  {4}    {2}    {3}    {2}    {3}      {2}
            {3}  {5}    {3}    {5}    {4}    {4}      {3}
            {4}  {2,3}  {4}    {6}    {5}    {6}      {4}
                        {5}    {7}    {6}    {7}      {5}
                        {6}    {2,5}  {7}    {8}      {6}
                        {2,4}  {3,4}  {8}    {9}      {7}
                                      {2,4}  {2,5}    {8}
                                      {2,6}  {2,7}    {9}
                                      {3,4}  {3,5}    {10}
                                      {3,5}  {3,6}    {2,4}
                                             {4,5}    {2,6}
                                             {2,3,4}  {2,8}
                                                      {3,6}
                                                      {3,7}
                                                      {4,5}
                                                      {4,6}
                                                      {2,3,5}
(End)
		

Crossrefs

The complement is A088571, allowing sum n A088314.
For sets with max < n instead of sum < n we have A365045, nonempty A070880.
For nonnegative coefficients we have A365312, complement A365311.
For sets with max <= n we have A365322.
For partitions we have A365323, nonnegative A365378.
A116861 and A364916 count linear combinations of strict partitions.
A326083 and A124506 appear to count combination-free subsets.

Programs

  • Mathematica
    combp[n_,y_]:=With[{s=Table[{k,i},{k,y},{i,1,Floor[n/k]}]},Select[Tuples[s],Total[Times@@@#]==n&]];
    Table[Length[Select[Select[Subsets[Range[n]],0Gus Wiseman, Sep 12 2023 *)

Extensions

More terms from David Wasserman, Aug 09 2005

A365322 Number of subsets of {1..n} that cannot be linearly combined using positive coefficients to obtain n.

Original entry on oeis.org

0, 1, 2, 5, 11, 26, 54, 116, 238, 490, 994, 2011, 4045, 8131, 16305, 32672, 65412, 130924, 261958, 524066, 1048301, 2096826, 4193904, 8388135, 16776641, 33553759, 67108053, 134216782, 268434324, 536869595, 1073740266, 2147481835, 4294965158, 8589932129
Offset: 0

Views

Author

Gus Wiseman, Sep 04 2023

Keywords

Comments

We consider (for example) that 2x + y + 3z is a positive linear combination of (x,y,z), but 2x + y is not, as the coefficient of z is 0.

Examples

			The set {1,3} has 4 = 1 + 3 so is not counted under a(4). However, 3 cannot be written as a linear combination of {1,3} using all positive coefficients, so it is counted under a(3).
The a(1) = 1 through a(4) = 11 subsets:
  {}  {}     {}       {}
      {1,2}  {2}      {3}
             {1,3}    {1,4}
             {2,3}    {2,3}
             {1,2,3}  {2,4}
                      {3,4}
                      {1,2,3}
                      {1,2,4}
                      {1,3,4}
                      {2,3,4}
                      {1,2,3,4}
		

Crossrefs

The complement is counted by A088314.
The version for strict partitions is A088528.
The nonnegative complement is counted by A365073, without n A365542.
The binary complement is A365315, nonnegative A365314.
The binary version is A365321, nonnegative A365320.
For nonnegative coefficients we have A365380.
A085489 and A364755 count subsets without the sum of two distinct elements.
A124506 appears to count combination-free subsets, differences of A326083.
A179822 counts sum-closed subsets, first differences of A326080.
A364350 counts combination-free strict partitions, non-strict A364915.
A365046 counts combination-full subsets, first differences of A364914.

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0, {{}}, `if`(i<1, {},
          {b(n, i-1)[], seq(map(x->{x[], i}, b(n-i*j, i-1))[], j=1..n/i)}))
        end:
    a:= n-> 2^n-nops(b(n$2)):
    seq(a(n), n=0..33);  # Alois P. Heinz, Sep 04 2023
  • Mathematica
    cpu[n_,y_]:=With[{s=Table[{k,i},{k,Union[y]},{i,1,Floor[n/k]}]},Select[Tuples[s],Total[Times@@@#]==n&]];
    Table[Length[Select[Subsets[Range[n]],cpu[n,#]=={}&]],{n,0,10}]
  • Python
    from sympy.utilities.iterables import partitions
    def A365322(n): return (1<Chai Wah Wu, Sep 14 2023

Formula

a(n) = 2^n - A088314(n).
a(n) = A070880(n) + 2^(n-1) for n>=1.

Extensions

More terms from Alois P. Heinz, Sep 04 2023

A364907 Number of ways to write n as a nonnegative linear combination of an integer partition of n.

Original entry on oeis.org

1, 1, 4, 13, 50, 179, 696, 2619, 10119, 38867, 150407, 582065, 2260367, 8786919, 34225256, 133471650, 521216494, 2037608462, 7974105052, 31235316275, 122457794193, 480473181271, 1886555402750, 7412471695859, 29142658077266, 114643347181003, 451237737215201
Offset: 0

Views

Author

Gus Wiseman, Aug 18 2023

Keywords

Comments

A way of writing n as a (presumed nonnegative) linear combination of a finite sequence y is any sequence of pairs (k_i,y_i) such that k_i >= 0 and Sum k_i*y_i = n. For example, the pairs ((3,1),(1,1),(1,1),(0,2)) are a way of writing 5 as a linear combination of (1,1,1,2), namely 5 = 3*1 + 1*1 + 1*1 + 0*2. Of course, there are A000041(n) ways to write n as a linear combination of (1..n).

Examples

			The a(0) = 1 through a(3) = 13 ways:
  0  1*1  1*2      1*3
          0*1+2*1  0*2+3*1
          1*1+1*1  1*2+1*1
          2*1+0*1  0*1+0*1+3*1
                   0*1+1*1+2*1
                   0*1+2*1+1*1
                   0*1+3*1+0*1
                   1*1+0*1+2*1
                   1*1+1*1+1*1
                   1*1+2*1+0*1
                   2*1+0*1+1*1
                   2*1+1*1+0*1
                   3*1+0*1+0*1
		

Crossrefs

The case with no zero coefficients is A000041.
A finer version is A364906.
The version for compositions is A364908, strict A364909.
Using just strict partitions we get A364910, main diagonal of A364916.
Main diagonal of A365004.
A000041 counts integer partitions, strict A000009.
A008284 counts partitions by length, strict A008289.
A323092 counts double-free partitions, ranks A320340.

Programs

  • Maple
    b:= proc(n, i, m) option remember; `if`(n=0, `if`(m=0, 1, 0),
         `if`(i<1, 0, b(n, i-1, m)+add(b(n-i, min(i, n-i), m-i*j), j=0..m/i)))
        end:
    a:= n-> b(n$3):
    seq(a(n), n=0..27);  # Alois P. Heinz, Jan 28 2024
  • Mathematica
    combs[n_,y_]:=With[{s=Table[{k,i},{k,y},{i,0,Floor[n/k]}]},Select[Tuples[s],Total[Times@@@#]==n&]];
    Table[Length[Join@@Table[combs[n,ptn],{ptn,IntegerPartitions[n]}]],{n,0,5}]

Formula

a(n) = Sum_{m:A056239(m)=n} A364906(m).
a(n) = A364912(2n,n).
a(n) = A365004(n,n).

Extensions

a(9)-a(26) from Alois P. Heinz, Jan 28 2024

A365045 Number of subsets of {1..n} containing n such that no element can be written as a positive linear combination of the others.

Original entry on oeis.org

0, 1, 1, 2, 4, 11, 23, 53, 111, 235, 483, 988, 1998, 4036, 8114, 16289, 32645, 65389, 130887, 261923, 524014, 1048251, 2096753, 4193832, 8388034, 16776544, 33553622, 67107919, 134216597, 268434140, 536869355, 1073740012, 2147481511, 4294964834, 8589931700
Offset: 0

Views

Author

Gus Wiseman, Aug 24 2023

Keywords

Comments

Also subsets of {1..n} containing n whose greatest element cannot be written as a positive linear combination of the others.

Examples

			The subset {3,4,10} has 10 = 2*3 + 1*4 so is not counted under a(10).
The a(0) = 0 through a(5) = 11 subsets:
  .  {1}  {2}  {3}    {4}        {5}
               {2,3}  {3,4}      {2,5}
                      {2,3,4}    {3,5}
                      {1,2,3,4}  {4,5}
                                 {2,4,5}
                                 {3,4,5}
                                 {1,2,3,5}
                                 {1,2,4,5}
                                 {1,3,4,5}
                                 {2,3,4,5}
                                 {1,2,3,4,5}
		

Crossrefs

The nonempty case is A070880.
The nonnegative version is A124506, first differences of A326083.
The binary version is A288728, first differences of A007865.
A subclass is A341507.
The complement is counted by A365042, first differences of A365043.
First differences of A365044.
The nonnegative complement is A365046, first differences of A364914.
The binary complement is A365070, first differences of A093971.
Without re-usable parts we have A365071, first differences of A151897.
A085489 and A364755 count subsets w/o the sum of two distinct elements.
A088809 and A364756 count subsets with the sum of two distinct elements.
A364350 counts combination-free strict partitions, complement A364839.
A364913 counts combination-full partitions.

Programs

  • Mathematica
    combp[n_,y_]:=With[{s=Table[{k,i},{k,y},{i,1,Floor[n/k]}]},Select[Tuples[s],Total[Times@@@#]==n&]];
    Table[Length[Select[Subsets[Range[n]],MemberQ[#,n]&&And@@Table[combp[#[[k]],Union[Delete[#,k]]]=={},{k,Length[#]}]&]],{n,0,10}]

Formula

a(n) = A070880(n) + 1 for n > 0.

A365314 Number of unordered pairs of distinct positive integers <= n that can be linearly combined using nonnegative coefficients to obtain n.

Original entry on oeis.org

0, 0, 1, 3, 6, 8, 14, 14, 23, 24, 33, 28, 52, 36, 55, 58, 73, 53, 95, 62, 110, 94, 105, 81, 165, 105, 133, 132, 176, 112, 225, 123, 210, 174, 192, 186, 306, 157, 223, 218, 328, 180, 354, 192, 324, 315, 288, 216, 474, 260, 383, 311, 404, 254, 491, 338, 511, 360
Offset: 0

Views

Author

Gus Wiseman, Sep 05 2023

Keywords

Comments

Is there only one case of nonzero adjacent equal parts, at position n = 6?

Examples

			We have 19 = 4*3 + 1*7, so the pair (3,7) is counted under a(19).
The a(2) = 1 through a(7) = 14 pairs:
  (1,2)  (1,2)  (1,2)  (1,2)  (1,2)  (1,2)
         (1,3)  (1,3)  (1,3)  (1,3)  (1,3)
         (2,3)  (1,4)  (1,4)  (1,4)  (1,4)
                (2,3)  (1,5)  (1,5)  (1,5)
                (2,4)  (2,3)  (1,6)  (1,6)
                (3,4)  (2,5)  (2,3)  (1,7)
                       (3,5)  (2,4)  (2,3)
                       (4,5)  (2,5)  (2,5)
                              (2,6)  (2,7)
                              (3,4)  (3,4)
                              (3,5)  (3,7)
                              (3,6)  (4,7)
                              (4,6)  (5,7)
                              (5,6)  (6,7)
		

Crossrefs

The unrestricted version is A000217, ranks A001358.
For all subsets instead of just pairs we have A365073, complement A365380.
For strict partitions we have A365311, complement A365312.
The case of positive coefficients is A365315, for all subsets A088314.
The binary complement is A365320, positive A365321.
For partitions we have A365379, complement A365378.
A004526 counts partitions of length 2, shift right for strict.
A007865 counts sum-free subsets, complement A093971.
A179822 and A326080 count sum-closed subsets.
A364350 counts combination-free strict partitions.
A364914/A365046 count combination-full subsets, complement A326083/A124506.

Programs

  • Mathematica
    combs[n_,y_]:=With[{s=Table[{k,i},{k,y},{i,0,Floor[n/k]}]},Select[Tuples[s],Total[Times@@@#]==n&]];
    Table[Length[Select[Subsets[Range[n],{2}], combs[n,#]!={}&]],{n,0,30}]
  • Python
    from itertools import count
    from sympy import divisors
    def A365314(n):
        a = set()
        for i in range(1,n+1):
            if not n%i:
                a.update(tuple(sorted((i,j))) for j in range(1,n+1) if j!=i)
            else:
                for j in count(0,i):
                    if j > n:
                        break
                    k = n-j
                    for d in divisors(k):
                        if d>=i:
                            break
                        a.add((d,i))
        return len(a) # Chai Wah Wu, Sep 12 2023

A365378 Number of integer partitions with sum < n whose distinct parts cannot be linearly combined using nonnegative coefficients to obtain n.

Original entry on oeis.org

0, 0, 0, 1, 1, 4, 2, 9, 5, 13, 10, 28, 7, 45, 25, 51, 32, 101, 31, 148, 50, 166, 106, 291, 47, 374, 176, 450, 179, 721, 121, 963, 285, 1080, 474, 1534, 200, 2140, 712, 2407, 599, 3539, 481, 4546, 1014, 4885
Offset: 0

Views

Author

Gus Wiseman, Sep 04 2023

Keywords

Examples

			The partition (5,2,2) has distinct parts {2,5} and has 11 = 3*2 + 1*5, so is not counted under a(11).
The partition (4,2,2) cannot be linearly combined to obtain 9, so is counted under a(9).
The partition (4,2,2) has distinct parts {2,4} and has 10 = 5*2 + 0*4, so is not counted under a(10).
The a(3) = 1 through a(10) = 10 partitions:
  (2)  (3)  (2)   (4)  (2)    (3)   (2)     (3)
            (3)   (5)  (3)    (5)   (4)     (4)
            (4)        (4)    (6)   (5)     (6)
            (22)       (5)    (7)   (6)     (7)
                       (6)    (33)  (7)     (8)
                       (22)         (8)     (9)
                       (33)         (22)    (33)
                       (42)         (42)    (44)
                       (222)        (44)    (63)
                                    (62)    (333)
                                    (222)
                                    (422)
                                    (2222)
		

Crossrefs

The complement for subsets is A365073, positive coefficients A088314.
For strict partitions we have A365312, positive coefficients A088528.
For positive coefficients we have A365323.
The complement is counted by A365379.
The version for subsets is A365380, positive coefficients A365322.
The relatively prime case is A365382.
A000041 counts integer partitions, strict A000009.
A008284 counts partitions by length, strict A008289.
A116861 and A364916 count linear combinations of strict partitions.
A364350 counts combination-free strict partitions, non-strict A364915.
A364839 counts combination-full strict partitions, non-strict A364913.

Programs

  • Mathematica
    combs[n_,y_]:=With[{s=Table[{k,i},{k,y},{i,0,Floor[n/k]}]},Select[Tuples[s],Total[Times@@@#]==n&]];
    Table[Length[Select[Join@@IntegerPartitions/@Range[n-1],combs[n,Union[#]]=={}&]],{n,0,10}]
  • Python
    from sympy.utilities.iterables import partitions
    def A365378(n):
        a = {tuple(sorted(set(p))) for p in partitions(n)}
        return sum(1 for m in range(1,n) for b in partitions(m) if not any(set(d).issubset(set(b)) for d in a)) # Chai Wah Wu, Sep 13 2023

Extensions

a(21)-a(45) from Chai Wah Wu, Sep 13 2023

A365321 Number of pairs of distinct positive integers <= n that cannot be linearly combined with positive coefficients to obtain n.

Original entry on oeis.org

0, 0, 1, 2, 4, 6, 10, 13, 18, 24, 30, 37, 46, 54, 63, 77, 85, 99, 111, 127, 141, 161, 171, 194, 210, 235, 246, 277, 293, 322, 342, 372, 389, 428, 441, 491, 504, 545, 561, 612, 635, 680, 701, 753, 773, 836, 846, 911, 932, 1000, 1017, 1082, 1103, 1176, 1193
Offset: 0

Views

Author

Gus Wiseman, Sep 06 2023

Keywords

Comments

We consider (for example) that 2x + y + 3z is a positive linear combination of (x,y,z), but 2x + y is not, as the coefficient of z is 0.

Examples

			For the pair p = (2,3) we have 4 = 2*2 + 0*3, so p is not counted under A365320(4), but it is not possible to write 4 as a positive linear combination of 2 and 3, so p is counted under a(4).
The a(2) = 1 through a(7) = 13 pairs:
  (1,2)  (1,3)  (1,4)  (1,5)  (1,6)  (1,7)
         (2,3)  (2,3)  (2,4)  (2,3)  (2,4)
                (2,4)  (2,5)  (2,5)  (2,6)
                (3,4)  (3,4)  (2,6)  (2,7)
                       (3,5)  (3,4)  (3,5)
                       (4,5)  (3,5)  (3,6)
                              (3,6)  (3,7)
                              (4,5)  (4,5)
                              (4,6)  (4,6)
                              (5,6)  (4,7)
                                     (5,6)
                                     (5,7)
                                     (6,7)
		

Crossrefs

The unrestricted version is A000217, ranks A001358.
For strict partitions we have A088528, complement A088314.
The (binary) complement is A365315, nonnegative A365314.
For nonnegative coefficients we have A365320, for subsets A365380.
For all subsets instead of just pairs we have A365322, complement A088314.
A004526 counts partitions of length 2, shift right for strict.
A007865 counts sum-free subsets, complement A093971.
A179822 and A326080 count sum-closed subsets.
A326083 and A124506 count combination-free subsets.
A364350 counts combination-free strict partitions.
A364914 and A365046 count combination-full subsets.

Programs

  • Mathematica
    combp[n_,y_]:=With[{s=Table[{k,i},{k,y},{i,1,Floor[n/k]}]},Select[Tuples[s],Total[Times@@@#]==n&]];
    Table[Length[Select[Subsets[Range[n],{2}], combp[n,#]=={}&]],{n,0,30}]
  • Python
    from itertools import count
    from sympy import divisors
    def A365321(n):
        a = set()
        for i in range(1,n+1):
            for j in count(i,i):
                if j >= n:
                    break
                for d in divisors(n-j):
                    if d>=i:
                        break
                    a.add((d,i))
        return (n*(n-1)>>1)-len(a) # Chai Wah Wu, Sep 12 2023

A365379 Number of integer partitions with sum <= n whose distinct parts can be linearly combined using nonnegative coefficients to obtain n.

Original entry on oeis.org

0, 1, 3, 5, 10, 14, 27, 35, 61, 83, 128, 166, 264, 327, 482, 632, 882, 1110, 1565, 1938, 2663, 3339, 4401, 5471, 7290, 8921, 11555, 14291, 18280, 22303, 28507, 34507, 43534, 52882, 65798, 79621, 98932, 118629, 146072, 175562, 214708, 256351, 312583, 371779
Offset: 0

Views

Author

Gus Wiseman, Sep 04 2023

Keywords

Examples

			The partition (4,2,2) cannot be linearly combined to obtain 9, so is not counted under a(9). On the other hand, the same partition (4,2,2) has distinct parts {2,4} and has 10 = 1*2 + 2*4, so is counted under a(10).
The a(1) = 1 through a(5) = 14 partitions:
  (1)  (1)   (1)    (1)     (1)
       (2)   (3)    (2)     (5)
       (11)  (11)   (4)     (11)
             (21)   (11)    (21)
             (111)  (21)    (31)
                    (22)    (32)
                    (31)    (41)
                    (111)   (111)
                    (211)   (211)
                    (1111)  (221)
                            (311)
                            (1111)
                            (2111)
                            (11111)
		

Crossrefs

For subsets with positive coefficients we have A088314, complement A088528.
The case of strict partitions with positive coefficients is also A088314.
The version for subsets is A365073, complement A365380.
The case of strict partitions is A365311, complement A365312.
The complement is counted by A365378.
A000041 counts integer partitions, strict A000009.
A008284 counts partitions by length, strict A008289.
A116861 and A364916 count linear combinations of strict partitions.
A364350 counts combination-free strict partitions, non-strict A364915.
A364839 counts combination-full strict partitions, non-strict A364913.

Programs

  • Mathematica
    combs[n_,y_]:=With[{s=Table[{k,i},{k,y},{i,0,Floor[n/k]}]},Select[Tuples[s],Total[Times@@@#]==n&]];
    Table[Length[Select[Join@@Array[IntegerPartitions,n],combs[n,Union[#]]!={}&]],{n,0,10}]
  • Python
    from sympy.utilities.iterables import partitions
    def A365379(n):
        a = {tuple(sorted(set(p))) for p in partitions(n)}
        return sum(1 for m in range(1,n+1) for b in partitions(m) if any(set(d).issubset(set(b)) for d in a)) # Chai Wah Wu, Sep 13 2023

Extensions

a(21)-a(43) from Chai Wah Wu, Sep 13 2023

A365545 Triangle read by rows where T(n,k) is the number of strict integer partitions of n with exactly k distinct non-subset-sums.

Original entry on oeis.org

1, 1, 0, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 0, 2, 0, 1, 0, 1, 0, 0, 2, 0, 1, 0, 1, 0, 0, 0, 3, 0, 1, 0, 0, 1, 1, 0, 0, 3, 0, 1, 0, 0, 0, 3, 0, 0, 0, 4, 0, 1, 0, 1, 0, 0, 2, 2, 0, 0, 4, 0, 1, 0, 1, 0, 0, 0, 5, 0, 0, 0, 5, 0, 1, 0, 2, 0, 0, 0, 0, 5, 2, 0, 0, 5, 0, 1, 0
Offset: 0

Views

Author

Gus Wiseman, Sep 24 2023

Keywords

Comments

For an integer partition y of n, we call a positive integer k <= n a non-subset-sum iff there is no submultiset of y summing to k.
Is column k = n - 7 given by A325695?

Examples

			Triangle begins:
  1
  1  0
  0  1  0
  1  0  1  0
  0  1  0  1  0
  0  0  2  0  1  0
  1  0  0  2  0  1  0
  1  0  0  0  3  0  1  0
  0  1  1  0  0  3  0  1  0
  0  0  3  0  0  0  4  0  1  0
  1  0  0  2  2  0  0  4  0  1  0
  1  0  0  0  5  0  0  0  5  0  1  0
  2  0  0  0  0  5  2  0  0  5  0  1  0
  2  0  1  0  0  0  8  0  0  0  6  0  1  0
  1  1  3  0  0  0  0  7  3  0  0  6  0  1  0
  2  0  4  0  1  0  0  0 12  0  0  0  7  0  1  0
  1  1  2  2  3  1  0  0  0 11  3  0  0  7  0  1  0
  2  0  3  0  7  0  1  0  0  0 16  0  0  0  8  0  1  0
  3  0  0  2  6  3  3  1  0  0  0 15  4  0  0  8  0  1  0
Row n = 12: counts the following partitions:
  (6,3,2,1)  .  .  .  .  (9,2,1)  (6,5,1)  .  .  (11,1)  .  (12)  .
  (5,4,2,1)              (8,3,1)  (6,4,2)        (10,2)
                         (7,4,1)                 (9,3)
                         (7,3,2)                 (8,4)
                         (5,4,3)                 (7,5)
		

Crossrefs

Row sums are A000009, non-strict A000041.
The complement (positive subset-sums) is also A365545 with rows reversed.
Weighted row sums are A365922, non-strict A365918.
The non-strict version is A365923, complement A365658, rank stat A325799.
A046663 counts partitions without a subset summing to k, strict A365663.
A126796 counts complete partitions, ranks A325781, strict A188431.
A364350 counts combination-free strict partitions, complement A364839.
A365543 counts partitions with a submultiset summing to k, strict A365661.
A365924 counts incomplete partitions, ranks A365830, strict A365831.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n], UnsameQ@@#&&Length[Complement[Range[n], Total/@Subsets[#]]]==k&]],{n,0,10},{k,0,n}]

A365922 Number of non-subset-sums of strict integer partitions of n.

Original entry on oeis.org

0, 1, 2, 4, 8, 11, 18, 25, 38, 51, 70, 93, 122, 159, 206, 263, 328, 420, 514, 645, 776, 967, 1154, 1413, 1686, 2042, 2414, 2890, 3394, 4062, 4732, 5598, 6494, 7652, 8836, 10329, 11884, 13833, 15830, 18376, 20936, 24131, 27476, 31547, 35780, 40966, 46292, 52737
Offset: 1

Views

Author

Gus Wiseman, Sep 23 2023

Keywords

Comments

For an integer partition y of n, we call a positive integer k <= n a non-subset-sum iff there is no submultiset of y summing to k.

Examples

			The a(6) = 11 ways, showing each strict partition and its non-subset-sums:
    (6): 1,2,3,4,5
   (51): 2,3,4
   (42): 1,3,5
  (321):
		

Crossrefs

The complement (positive subset-sums) is A284640, non-strict A276024.
Weighted row sums of A365545, non-strict A365923.
Row sums of A365663, non-strict A046663.
The non-strict version is A365918.
The zero-full complement (subset-sums) is A365925, non-strict A304792.
A000041 counts integer partitions, strict A000009.
A126796 counts complete partitions, ranks A325781, strict A188431.
A364350 counts combination-free strict partitions, complement A364839.
A365543 counts partitions with a submultiset summing to k.
A365661 counts strict partitions w/ a subset summing to k.
A365924 counts incomplete partitions, ranks A365830, strict A365831.

Programs

  • Mathematica
    Table[Total[Length[Complement[Range[n], Total/@Subsets[#]]]& /@ Select[IntegerPartitions[n], UnsameQ@@#&]],{n,30}]
Previous Showing 51-60 of 80 results. Next