cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A365663 Triangle read by rows where T(n,k) is the number of strict integer partitions of n without a subset summing to k.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 2, 2, 2, 2, 2, 2, 3, 2, 2, 3, 3, 3, 3, 3, 3, 3, 4, 3, 5, 3, 4, 3, 5, 5, 4, 5, 5, 4, 5, 5, 5, 6, 5, 6, 7, 6, 5, 6, 5, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 8, 9, 8, 8, 8, 11, 8, 8, 8, 9, 8, 10, 11, 10, 10, 10, 10, 10, 10, 10, 10, 11, 10, 12, 13, 11, 13, 11, 12, 15, 12, 11, 13, 11, 13, 12
Offset: 2

Views

Author

Gus Wiseman, Sep 17 2023

Keywords

Comments

Warning: Do not confuse with the non-strict version A046663.
Rows are palindromes.

Examples

			Triangle begins:
  1
  1  1
  1  2  1
  2  2  2  2
  2  2  3  2  2
  3  3  3  3  3  3
  3  4  3  5  3  4  3
  5  5  4  5  5  4  5  5
  5  6  5  6  7  6  5  6  5
  7  7  7  7  7  7  7  7  7  7
  8  9  8  8  8 11  8  8  8  9  8
Row n = 8 counts the following strict partitions:
  (8)    (8)      (8)    (8)      (8)    (8)      (8)
  (6,2)  (7,1)    (7,1)  (7,1)    (7,1)  (7,1)    (6,2)
  (5,3)  (5,3)    (6,2)  (6,2)    (6,2)  (5,3)    (5,3)
         (4,3,1)         (5,3)           (4,3,1)
                         (5,2,1)
		

Crossrefs

Columns k = 0 and k = n are A025147.
The non-strict version is A046663, central column A006827.
Central column n = 2k is A321142.
The complement for subsets instead of strict partitions is A365381.
The complement is A365661, non-strict A365543, central column A237258.
Row sums are A365922.
A000009 counts subsets summing to n.
A000124 counts distinct possible sums of subsets of {1..n}.
A124506 appears to count combination-free subsets, differences of A326083.
A364272 counts sum-full strict partitions, sum-free A364349.
A364350 counts combination-free strict partitions, complement A364839.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n], UnsameQ@@#&&FreeQ[Total/@Subsets[#],k]&]], {n,2,15},{k,1,n-1}]

A365925 Number of subset-sums of strict integer partitions of n.

Original entry on oeis.org

1, 2, 2, 6, 6, 10, 17, 22, 29, 42, 59, 74, 102, 130, 171, 226, 281, 356, 454, 566, 699, 896, 1080, 1342, 1637, 2006, 2413, 2962, 3548, 4286, 5114, 6148, 7272, 8738, 10268, 12224, 14387, 16996, 19863, 23450, 27257, 31984, 37187, 43364, 50173, 58428, 67322
Offset: 0

Views

Author

Gus Wiseman, Sep 26 2023

Keywords

Comments

This is the "not necessarily positive" version, cf. A284640.

Examples

			The a(6) = 17 ways, showing each strict partition and its subset-sums:
    (6): 0,6
   (51): 0,1,5,6
   (42): 0,2,4,6
  (321): 0,1,2,3,4,5,6
		

Crossrefs

The positive case is A284640.
The non-strict version is A304792, positive case A276024.
Row sums of A365661, non-strict A365543.
The complement (non-subset-sums) is A365922, non-strict A365918.
A000041 counts integer partitions, strict A000009.
A126796 counts complete partitions, ranks A325781, strict A188431.
A365923 counts partitions by non-subset-sums, strict A365545.
A365924 counts incomplete partitions, ranks A365830, strict A365831.

Programs

  • Mathematica
    Table[Total[Length[Union[Total/@Subsets[#]]]& /@ Select[IntegerPartitions[n], UnsameQ@@#&]],{n,30}]

A367214 Number of strict integer partitions of n whose length (number of parts) is equal to the sum of some submultiset.

Original entry on oeis.org

1, 1, 0, 1, 0, 1, 2, 2, 3, 4, 5, 5, 7, 8, 10, 12, 14, 17, 21, 25, 30, 36, 43, 51, 60, 71, 83, 97, 113, 132, 153, 178, 205, 238, 272, 315, 360, 413, 471, 539, 613, 698, 792, 899, 1018, 1153, 1302, 1470, 1658, 1867, 2100, 2362, 2652, 2974, 3335, 3734, 4178, 4672
Offset: 0

Views

Author

Gus Wiseman, Nov 12 2023

Keywords

Comments

These partitions have Heinz numbers A367224 /\ A005117.

Examples

			The strict partition (6,4,3,2,1) has submultisets {1,4} and {2,3} with sum 5 so is counted under a(16).
The a(1) = 1 through a(10) = 5 strict partitions:
  (1)  .  (2,1)  .  (3,2)  (4,2)    (5,2)    (6,2)    (7,2)    (8,2)
                           (3,2,1)  (4,2,1)  (4,3,1)  (4,3,2)  (5,3,2)
                                             (5,2,1)  (5,3,1)  (6,3,1)
                                                      (6,2,1)  (7,2,1)
                                                               (4,3,2,1)
		

Crossrefs

The following sequences count and rank integer partitions and finite sets according to whether their length is a subset-sum or linear combination of the parts. The current sequence is starred.
sum-full sum-free comb-full comb-free
-------------------------------------------
A000041 counts integer partitions, strict A000009.
A088809/A093971/A364534 count certain types of sum-full subsets.
A188431 counts complete strict partitions, incomplete A365831.
A240855 counts strict partitions whose length is a part, complement A240861.
A275972 counts strict knapsack partitions, non-strict A108917.
A364272 counts sum-full strict partitions, sum-free A364349.
A365925 counts subset-sums of strict partitions, non-strict A304792.
Triangles:
A008289 counts strict partitions by length, non-strict A008284.
A365661 counts strict partitions with a subset-sum k, non-strict A365543.
A365832 counts strict partitions by subset-sums, non-strict A365658.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n], UnsameQ@@#&&MemberQ[Total/@Subsets[#], Length[#]]&]], {n,0,30}]

A367215 Number of strict integer partitions of n whose length (number of parts) is not equal to the sum of any subset.

Original entry on oeis.org

0, 0, 1, 1, 2, 2, 2, 3, 3, 4, 5, 7, 8, 10, 12, 15, 18, 21, 25, 29, 34, 40, 46, 53, 62, 71, 82, 95, 109, 124, 143, 162, 185, 210, 240, 270, 308, 347, 393, 443, 500, 562, 634, 711, 798, 895, 1002, 1120, 1252, 1397, 1558, 1735, 1930, 2146, 2383, 2644, 2930, 3245
Offset: 0

Views

Author

Gus Wiseman, Nov 12 2023

Keywords

Comments

These partitions have Heinz numbers A367225 /\ A005117.

Examples

			The a(2) = 1 through a(11) = 7 strict partitions:
  (2)  (3)  (4)    (5)    (6)    (7)    (8)    (9)    (10)     (11)
            (3,1)  (4,1)  (5,1)  (4,3)  (5,3)  (5,4)  (6,4)    (6,5)
                                 (6,1)  (7,1)  (6,3)  (7,3)    (7,4)
                                               (8,1)  (9,1)    (8,3)
                                                      (5,4,1)  (10,1)
                                                               (5,4,2)
                                                               (6,4,1)
The a(2) = 1 through a(15) = 15 strict partitions (A..F = 10..15):
  2  3  4   5   6   7   8   9   A    B    C    D    E     F
        31  41  51  43  53  54  64   65   75   76   86    87
                    61  71  63  73   74   84   85   95    96
                            81  91   83   93   94   A4    A5
                                541  A1   B1   A3   B3    B4
                                     542  642  C1   D1    C3
                                     641  651  652  752   E1
                                          741  742  761   654
                                               751  842   762
                                               841  851   852
                                                    941   861
                                                    6521  942
                                                          951
                                                          A41
                                                          7521
		

Crossrefs

The following sequences count and rank integer partitions and finite sets according to whether their length is a subset-sum or linear combination of the parts. The current sequence is starred.
sum-full sum-free comb-full comb-free
-------------------------------------------
A000041 counts integer partitions, strict A000009.
A007865/A085489/A151897 count certain types of sum-free subsets.
A124506 appears to count combination-free subsets, differences of A326083.
A188431 counts complete strict partitions, incomplete A365831.
A237667 counts sum-free partitions, ranks A364531.
A240861 counts strict partitions with length not a part, complement A240855.
A275972 counts strict knapsack partitions, non-strict A108917.
A364349 counts sum-free strict partitions, sum-full A364272.
Triangles:
A008289 counts strict partitions by length, non-strict A008284.
A365661 counts strict partitions with a subset-sum k, non-strict A365543.
A365663 counts strict partitions without a subset-sum k, non-strict A046663.
A365832 counts strict partitions by subset-sums, non-strict A365658.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n], UnsameQ@@#&&FreeQ[Total/@Subsets[#], Length[#]]&]], {n,0,30}]

A365830 Heinz numbers of incomplete integer partitions, meaning not every number from 0 to A056239(n) is the sum of some submultiset.

Original entry on oeis.org

3, 5, 7, 9, 10, 11, 13, 14, 15, 17, 19, 21, 22, 23, 25, 26, 27, 28, 29, 31, 33, 34, 35, 37, 38, 39, 41, 43, 44, 45, 46, 47, 49, 50, 51, 52, 53, 55, 57, 58, 59, 61, 62, 63, 65, 66, 67, 68, 69, 70, 71, 73, 74, 75, 76, 77, 78, 79, 81, 82, 83, 85, 86, 87, 88, 89
Offset: 1

Views

Author

Gus Wiseman, Sep 26 2023

Keywords

Comments

First differs from A325798 in lacking 156.
The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). This gives a bijective correspondence between positive integers and integer partitions.
The complement (complete partitions) is A325781.

Examples

			The terms together with their prime indices begin:
   3: {2}
   5: {3}
   7: {4}
   9: {2,2}
  10: {1,3}
  11: {5}
  13: {6}
  14: {1,4}
  15: {2,3}
  17: {7}
  19: {8}
  21: {2,4}
  22: {1,5}
  23: {9}
  25: {3,3}
  26: {1,6}
  27: {2,2,2}
  28: {1,1,4}
For example, the submultisets of (1,1,2,6) (right column) and their sums (left column) are:
   0: ()
   1: (1)
   2: (2)  or (11)
   3: (12)
   4: (112)
   6: (6)
   7: (16)
   8: (26) or (116)
   9: (126)
  10: (1126)
But 5 is missing, so 156 is in the sequence.
		

Crossrefs

For prime indices instead of sums we have A080259, complement of A055932.
The complement is A325781, counted by A126796, strict A188431.
Positions of nonzero terms in A325799, complement A304793.
These partitions are counted by A365924, strict A365831.
A056239 adds up prime indices, row sums of A112798.
A276024 counts positive subset-sums of partitions, strict A284640
A299701 counts distinct subset-sums of prime indices.
A365918 counts distinct non-subset-sums of partitions, strict A365922.
A365923 counts partitions by distinct non-subset-sums, strict A365545.

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    nmz[y_]:=Complement[Range[Total[y]],Total/@Subsets[y]];
    Select[Range[100],Length[nmz[prix[#]]]>0&]

A365918 Number of distinct non-subset-sums of integer partitions of n.

Original entry on oeis.org

0, 1, 2, 6, 8, 19, 24, 46, 60, 101, 124, 206, 250, 378, 462, 684, 812, 1165, 1380, 1927, 2268, 3108, 3606, 4862, 5648, 7474, 8576, 11307, 12886, 16652, 19050, 24420, 27584, 35225, 39604, 49920, 56370, 70540, 78608, 98419, 109666, 135212, 151176, 185875, 205308
Offset: 1

Views

Author

Gus Wiseman, Sep 23 2023

Keywords

Comments

For an integer partition y of n, we call a positive integer k <= n a non-subset-sum iff there is no submultiset of y summing to k.

Examples

			The a(6) = 19 ways, showing each partition and its non-subset-sums:
       (6): 1,2,3,4,5
      (51): 2,3,4
      (42): 1,3,5
     (411): 3
      (33): 1,2,4,5
     (321):
    (3111):
     (222): 1,3,5
    (2211):
   (21111):
  (111111):
		

Crossrefs

Row sums of A046663, strict A365663.
The zero-full complement (subset-sums) is A304792.
The strict case is A365922.
Weighted row-sums of A365923, rank statistic A325799, complement A365658.
A000041 counts integer partitions, strict A000009.
A126796 counts complete partitions, ranks A325781, strict A188431.
A365543 counts partitions with a submultiset summing to k, strict A365661.
A365924 counts incomplete partitions, ranks A365830, strict A365831.

Programs

  • Mathematica
    Table[Total[Length[Complement[Range[n],Total/@Subsets[#]]]&/@IntegerPartitions[n]],{n,10}]
  • Python
    # uses A304792_T
    from sympy import npartitions
    def A365918(n): return (n+1)*npartitions(n)-A304792_T(n,n,(0,),1) # Chai Wah Wu, Sep 25 2023

Formula

a(n) = (n+1)*A000041(n) - A304792(n).

Extensions

a(21)-a(45) from Chai Wah Wu, Sep 25 2023

A365923 Triangle read by rows where T(n,k) is the number of integer partitions of n with exactly k distinct non-subset-sums.

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 2, 0, 1, 0, 2, 1, 1, 1, 0, 4, 0, 2, 0, 1, 0, 5, 1, 0, 3, 1, 1, 0, 8, 0, 3, 0, 3, 0, 1, 0, 10, 2, 1, 2, 2, 3, 1, 1, 0, 16, 0, 5, 0, 3, 0, 5, 0, 1, 0, 20, 2, 2, 4, 2, 6, 0, 4, 1, 1, 0, 31, 0, 6, 0, 8, 0, 5, 0, 5, 0, 1, 0, 39, 4, 4, 4, 1, 6, 6, 3, 2, 6, 1, 1, 0
Offset: 0

Views

Author

Gus Wiseman, Sep 24 2023

Keywords

Comments

For an integer partition y of n, we call a positive integer k <= n a non-subset-sum iff there is no submultiset of y summing to k.

Examples

			The partition (4,2) has subset-sums {2,4,6} and non-subset-sums {1,3,5} so is counted under T(6,3).
Triangle begins:
   1
   1  0
   1  1  0
   2  0  1  0
   2  1  1  1  0
   4  0  2  0  1  0
   5  1  0  3  1  1  0
   8  0  3  0  3  0  1  0
  10  2  1  2  2  3  1  1  0
  16  0  5  0  3  0  5  0  1  0
  20  2  2  4  2  6  0  4  1  1  0
  31  0  6  0  8  0  5  0  5  0  1  0
  39  4  4  4  1  6  6  3  2  6  1  1  0
  55  0 13  0  8  0 12  0  6  0  6  0  1  0
  71  5  8  7  3  5  3 16  3  6  0  6  1  1  0
Row n = 6 counts the following partitions:
  (321)     (411)  .  (51)   (33)  (6)  .
  (3111)              (42)
  (2211)              (222)
  (21111)
  (111111)
		

Crossrefs

Row sums are A000041.
The rank statistic counted by this triangle is A325799.
The strict case is A365545, weighted row sums A365922.
The complement (positive subset-sum) is A365658.
Weighted row sums are A365918, for positive subset-sums A304792.
A046663 counts partitions w/o a submultiset summing to k, strict A365663.
A126796 counts complete partitions, ranks A325781, strict A188431.
A364350 counts combination-free strict partitions, complement A364839.
A365543 counts partitions with a submultiset summing to k, strict A365661.
A365924 counts incomplete partitions, ranks A365830, strict A365831.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n], Length[Complement[Range[n], Total/@Subsets[#]]]==k&]], {n,0,10}, {k,0,n}]

A365545 Triangle read by rows where T(n,k) is the number of strict integer partitions of n with exactly k distinct non-subset-sums.

Original entry on oeis.org

1, 1, 0, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 0, 2, 0, 1, 0, 1, 0, 0, 2, 0, 1, 0, 1, 0, 0, 0, 3, 0, 1, 0, 0, 1, 1, 0, 0, 3, 0, 1, 0, 0, 0, 3, 0, 0, 0, 4, 0, 1, 0, 1, 0, 0, 2, 2, 0, 0, 4, 0, 1, 0, 1, 0, 0, 0, 5, 0, 0, 0, 5, 0, 1, 0, 2, 0, 0, 0, 0, 5, 2, 0, 0, 5, 0, 1, 0
Offset: 0

Views

Author

Gus Wiseman, Sep 24 2023

Keywords

Comments

For an integer partition y of n, we call a positive integer k <= n a non-subset-sum iff there is no submultiset of y summing to k.
Is column k = n - 7 given by A325695?

Examples

			Triangle begins:
  1
  1  0
  0  1  0
  1  0  1  0
  0  1  0  1  0
  0  0  2  0  1  0
  1  0  0  2  0  1  0
  1  0  0  0  3  0  1  0
  0  1  1  0  0  3  0  1  0
  0  0  3  0  0  0  4  0  1  0
  1  0  0  2  2  0  0  4  0  1  0
  1  0  0  0  5  0  0  0  5  0  1  0
  2  0  0  0  0  5  2  0  0  5  0  1  0
  2  0  1  0  0  0  8  0  0  0  6  0  1  0
  1  1  3  0  0  0  0  7  3  0  0  6  0  1  0
  2  0  4  0  1  0  0  0 12  0  0  0  7  0  1  0
  1  1  2  2  3  1  0  0  0 11  3  0  0  7  0  1  0
  2  0  3  0  7  0  1  0  0  0 16  0  0  0  8  0  1  0
  3  0  0  2  6  3  3  1  0  0  0 15  4  0  0  8  0  1  0
Row n = 12: counts the following partitions:
  (6,3,2,1)  .  .  .  .  (9,2,1)  (6,5,1)  .  .  (11,1)  .  (12)  .
  (5,4,2,1)              (8,3,1)  (6,4,2)        (10,2)
                         (7,4,1)                 (9,3)
                         (7,3,2)                 (8,4)
                         (5,4,3)                 (7,5)
		

Crossrefs

Row sums are A000009, non-strict A000041.
The complement (positive subset-sums) is also A365545 with rows reversed.
Weighted row sums are A365922, non-strict A365918.
The non-strict version is A365923, complement A365658, rank stat A325799.
A046663 counts partitions without a subset summing to k, strict A365663.
A126796 counts complete partitions, ranks A325781, strict A188431.
A364350 counts combination-free strict partitions, complement A364839.
A365543 counts partitions with a submultiset summing to k, strict A365661.
A365924 counts incomplete partitions, ranks A365830, strict A365831.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n], UnsameQ@@#&&Length[Complement[Range[n], Total/@Subsets[#]]]==k&]],{n,0,10},{k,0,n}]

A365832 Triangle read by rows where T(n,k) is the number of strict integer partitions of n with k distinct sums of nonempty subsets.

Original entry on oeis.org

1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 2, 0, 0, 0, 1, 0, 2, 0, 0, 1, 0, 1, 0, 3, 0, 0, 0, 1, 0, 1, 0, 3, 0, 0, 1, 1, 0, 0, 1, 0, 4, 0, 0, 0, 3, 0, 0, 0, 1, 0, 4, 0, 0, 2, 2, 0, 0, 1, 0, 1, 0, 5, 0, 0, 0, 5, 0, 0, 0, 1, 0, 1, 0, 5, 0, 0, 2, 5, 0, 0, 0, 0, 2
Offset: 0

Views

Author

Gus Wiseman, Sep 28 2023

Keywords

Examples

			The partition (7,6,1) has sums 1, 6, 7, 8, 13, 14, so is counted under T(14,6).
Triangle begins:
  1
  0  1
  0  1  0
  0  1  0  1
  0  1  0  1  0
  0  1  0  2  0  0
  0  1  0  2  0  0  1
  0  1  0  3  0  0  0  1
  0  1  0  3  0  0  1  1  0
  0  1  0  4  0  0  0  3  0  0
  0  1  0  4  0  0  2  2  0  0  1
  0  1  0  5  0  0  0  5  0  0  0  1
  0  1  0  5  0  0  2  5  0  0  0  0  2
  0  1  0  6  0  0  0  8  0  0  0  1  0  2
  0  1  0  6  0  0  3  7  0  0  0  0  3  1  1
  0  1  0  7  0  0  0 12  0  0  0  1  0  4  0  2
  0  1  0  7  0  0  3 11  0  0  0  1  3  2  2  1  1
  0  1  0  8  0  0  0 16  0  0  0  1  0  7  0  3  0  2
  0  1  0  8  0  0  4 15  0  0  0  1  3  3  6  2  0  0  3
  0  1  0  9  0  0  0 21  0  0  0  2  0  9  0  7  0  1  0  4
  0  1  0  9  0  0  4 20  0  0  1  0  4  8  5  5  0  0  2  0  5
Row n = 14 counts the following partitions (A..E = 10..14):
  (E)  .  (D1)  .  .  (761)  (B21)  .  .  .  .  (6521)  (8321)  (7421)
          (C2)        (752)  (A31)              (6431)
          (B3)        (743)  (941)              (5432)
          (A4)               (932)
          (95)               (851)
          (86)               (842)
                             (653)
		

Crossrefs

Row sums are A000009.
Rightmost column n = k is A188431, non-strict A126796.
The one-based weighted row sums are A284640.
The corresponding rank statistic is A299701.
The non-strict version is A365658.
Central column n = 2k in the non-strict case is A365660.
Reverse-weighted row-sums are A365922, non-strict A276024.
A000041 counts integer partitions.
A000124 counts distinct sums of subsets of {1..n}.
A365543 counts partitions with a submultiset summing to k, strict A365661.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],UnsameQ@@#&&Length[Union[Total/@Rest[Subsets[#]]]]==k&]],{n,0,15},{k,0,n}]

A365919 Heinz numbers of integer partitions with the same number of distinct positive subset-sums as distinct non-subset-sums.

Original entry on oeis.org

1, 3, 9, 21, 22, 27, 63, 76, 81, 117, 147, 175, 186, 189, 243, 248, 273, 286, 290, 322, 345, 351, 399, 418, 441, 513, 516, 567, 688, 715, 729, 819, 1029, 1053, 1062, 1156, 1180, 1197, 1323, 1375, 1416, 1484, 1521, 1539, 1701, 1827, 1888, 1911, 2068, 2115, 2130
Offset: 1

Views

Author

Gus Wiseman, Sep 25 2023

Keywords

Comments

The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). This gives a bijective correspondence between positive integers and integer partitions.

Examples

			The terms together with their prime indices begin:
     1: {}
     3: {2}
     9: {2,2}
    21: {2,4}
    22: {1,5}
    27: {2,2,2}
    63: {2,2,4}
    76: {1,1,8}
    81: {2,2,2,2}
   117: {2,2,6}
   147: {2,4,4}
   175: {3,3,4}
   186: {1,2,11}
   189: {2,2,2,4}
   243: {2,2,2,2,2}
		

Crossrefs

The LHS is A304793, counted by A365658, with empty sets A299701.
The RHS is A325799, counted by A365923 (strict A365545).
A046663 counts partitions without a subset summing to k, strict A365663.
A056239 adds up prime indices, row sums of A112798.
A276024 counts positive subset-sums of partitions, strict A284640.
A325781 ranks complete partitions, counted by A126796.
A365830 ranks incomplete partitions, counted by A365924.
A365918 counts non-subset-sums of partitions, strict A365922.

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    smu[y_]:=Union[Total/@Rest[Subsets[y]]];
    nmz[y_]:=Complement[Range[Total[y]],Total/@Subsets[y]];
    Select[Range[100],Length[smu[prix[#]]]==Length[nmz[prix[#]]]&]

Formula

Positive integers k such that A304793(k) = A325799(k).
Showing 1-10 of 10 results.