cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 51-57 of 57 results.

A365826 Number of strict integer partitions of n that are not of length 2 and do not contain n/2.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 2, 2, 4, 4, 7, 7, 12, 12, 20, 20, 30, 31, 45, 46, 66, 68, 93, 97, 130, 136, 179, 188, 242, 256, 325, 344, 432, 459, 568, 606, 742, 793, 963, 1031, 1240, 1331, 1589, 1707, 2026, 2179, 2567, 2766, 3240, 3493, 4072, 4393, 5094, 5501, 6351
Offset: 0

Views

Author

Gus Wiseman, Sep 20 2023

Keywords

Comments

Also the number of strict integer partitions of n without two parts (allowing parts to be re-used) summing to n.

Examples

			The a(6) = 1 through a(12) = 7 strict partitions:
  (6)  (7)      (8)      (9)      (10)       (11)       (12)
       (4,2,1)  (5,2,1)  (4,3,2)  (6,3,1)    (5,4,2)    (5,4,3)
                         (5,3,1)  (7,2,1)    (6,3,2)    (7,3,2)
                         (6,2,1)  (4,3,2,1)  (6,4,1)    (7,4,1)
                                             (7,3,1)    (8,3,1)
                                             (8,2,1)    (9,2,1)
                                             (5,3,2,1)  (5,4,2,1)
		

Crossrefs

The second condition alone has bisections A078408 and A365828.
The complement is counted by A365659.
The non-strict version is A365825, complement A238628.
The first condition alone is A365827, complement A140106.
A000041 counts integer partitions, strict A000009.
A182616 counts partitions of 2n that do not contain n, strict A365828.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n], UnsameQ@@#&&FreeQ[Total/@Tuples[#,2],n]&]], {n,0,30}]

A366127 Number of finite incomplete multisets of positive integers with greatest non-subset-sum n.

Original entry on oeis.org

1, 2, 4, 6, 11, 15, 25, 35, 53, 72, 108
Offset: 1

Views

Author

Gus Wiseman, Sep 30 2023

Keywords

Comments

A non-subset-sum of a multiset of positive integers summing to n is an element of {1..n} that is not the sum of any submultiset. A multiset is incomplete if it has at least one non-subset-sum.

Examples

			The non-subset-sums of y = {2,2,3} are {1,6}, with maximum 6, so y is counted under a(6).
The a(1) = 1 through a(6) = 15 multisets:
  {2}  {3}    {4}      {5}        {6}          {7}
       {1,3}  {1,4}    {1,5}      {1,6}        {1,7}
              {2,2}    {2,3}      {2,4}        {2,5}
              {1,1,4}  {1,1,5}    {3,3}        {3,4}
                       {1,2,5}    {1,1,6}      {1,1,7}
                       {1,1,1,5}  {1,2,6}      {1,2,7}
                                  {1,3,3}      {1,3,4}
                                  {2,2,2}      {2,2,3}
                                  {1,1,1,6}    {1,1,1,7}
                                  {1,1,2,6}    {1,1,2,7}
                                  {1,1,1,1,6}  {1,1,3,7}
                                               {1,2,2,7}
                                               {1,1,1,1,7}
                                               {1,1,1,2,7}
                                               {1,1,1,1,1,7}
		

Crossrefs

For least instead of greatest we have A126796, ranks A325781, strict A188431.
These multisets have ranks A365830.
Counts appearances of n in the rank statistic A365920.
Column sums of A365921.
These multisets counted by sum are A365924, strict A365831.
The strict case is A366129.
A000041 counts integer partitions, strict A000009.
A046663 counts partitions without a submultiset summing k, strict A365663.
A325799 counts non-subset-sums of prime indices.
A364350 counts combination-free strict partitions, complement A364839.
A365543 counts partitions with a submultiset summing to k.
A365661 counts strict partitions w/ a subset summing to k.
A365918 counts non-subset-sums of partitions.
A365923 counts partitions by non-subset sums, strict A365545.

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    nmz[y_]:=Complement[Range[Total[y]],Total/@Subsets[y]];
    Table[Length[Select[Join@@IntegerPartitions/@Range[n,2*n],Max@@nmz[#]==n&]],{n,5}]

A371954 Triangle read by rows where T(n,k) is the number of integer partitions of n that can be partitioned into k multisets with equal sums (k-quanimous).

Original entry on oeis.org

1, 0, 1, 0, 2, 1, 0, 3, 0, 1, 0, 5, 3, 0, 1, 0, 7, 0, 0, 0, 1, 0, 11, 6, 4, 0, 0, 1, 0, 15, 0, 0, 0, 0, 0, 1, 0, 22, 14, 0, 5, 0, 0, 0, 1, 0, 30, 0, 10, 0, 0, 0, 0, 0, 1, 0, 42, 25, 0, 0, 6, 0, 0, 0, 0, 1, 0, 56, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 77, 53, 30, 15, 0, 7, 0, 0, 0, 0, 0, 1
Offset: 0

Views

Author

Gus Wiseman, Apr 20 2024

Keywords

Comments

A finite multiset of numbers is defined to be k-quanimous iff it can be partitioned into k multisets with equal sums.

Examples

			Triangle begins:
  1
  0  1
  0  2  1
  0  3  0  1
  0  5  3  0  1
  0  7  0  0  0  1
  0 11  6  4  0  0  1
  0 15  0  0  0  0  0  1
  0 22 14  0  5  0  0  0  1
  0 30  0 10  0  0  0  0  0  1
  0 42 25  0  0  6  0  0  0  0  1
  0 56  0  0  0  0  0  0  0  0  0  1
  0 77 53 30 15  0  7  0  0  0  0  0  1
Row n = 6 counts the following partitions:
  .  (6)       (33)      (222)     .  .  (111111)
     (51)      (321)     (2211)
     (42)      (3111)    (21111)
     (411)     (2211)    (111111)
     (33)      (21111)
     (321)     (111111)
     (3111)
     (222)
     (2211)
     (21111)
     (111111)
		

Crossrefs

Row n has A000005(n) positive entries.
Column k = 1 is A000041.
Column k = 2 is A002219 (aerated), ranks A357976.
Column k = 3 is A002220 (aerated), ranks A371955.
Removing all zeros gives A371783.
Row sums are A372121.
A321451 counts non-quanimous partitions, ranks A321453.
A321452 counts quanimous partitions, ranks A321454.
A371789 counts non-quanimous sets, complement A371796.

Programs

  • Mathematica
    hwt[n_]:=Total[Cases[FactorInteger[n],{p_,k_}:>PrimePi[p]*k]];
    facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&, Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    Table[Length[Select[IntegerPartitions[n], Select[facs[Times@@Prime/@#], Length[#]==k&&SameQ@@hwt/@#&]!={}&]],{n,0,10},{k,0,n}]

A372121 Row sums of A371783 and A371954 (k-quanimous partitions).

Original entry on oeis.org

1, 3, 4, 9, 8, 22, 16, 42, 41, 74, 57, 183, 102, 233, 263, 463, 298, 875, 491, 1350, 1172, 1775, 1256, 4273, 2225, 4399, 4584, 8049, 4566, 14913, 6843, 18539, 15831, 22894, 18196, 53323, 21638, 48947, 50281, 94500, 44584, 144976, 63262, 173436, 169361, 202153
Offset: 1

Views

Author

Gus Wiseman, Apr 20 2024

Keywords

Comments

A finite multiset of numbers is defined to be k-quanimous iff it can be partitioned into k multisets with equal sums. The triangles A371783 and A371954 count k-quanimous partitions.

Crossrefs

Row sums of A371783.
Row sums of A371954.
A000005 counts divisors.
A000041 counts integer partitions.
A002219 (aerated) counts biquanimous partitions, ranks A357976.
A321452 counts quanimous partitions, complement A321451.
A371796 counts quanimous sets, differences A371797.

Programs

  • Mathematica
    hwt[n_]:=Total[Cases[FactorInteger[n],{p_,k_}:>PrimePi[p]*k]];
    facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&, Select[facs[n/d],Min@@#>=d&]], {d,Rest[Divisors[n]]}]];
    Table[Sum[Length[Select[IntegerPartitions[n], Select[facs[Times@@Prime/@#], Length[#]==k&&SameQ@@hwt/@#&]!={}&]],{k,Divisors[n]}],{n,1,10}]
  • PARI
    T(n, d) = my(v=partitions(n/d), w=List([])); forvec(s=vector(d, i, [1, #v]), listput(w, vecsort(concat(vector(d, i, v[s[i]])))), 1); #Set(w);
    a(n) = sumdiv(n, d, T(n, d)); \\ Jinyuan Wang, Feb 13 2025

Extensions

More terms from Jinyuan Wang, Feb 13 2025

A366129 Number of finite sets of positive integers with greatest non-subset-sum n.

Original entry on oeis.org

1, 2, 2, 4, 4, 6, 7, 11, 11, 15, 18, 23, 28, 36, 40, 50, 59, 70, 83, 101, 118, 141, 166, 195, 227, 268, 306, 358, 414, 478, 549, 640, 730, 846, 968, 1113, 1271, 1462, 1657, 1897, 2154, 2451
Offset: 1

Views

Author

Gus Wiseman, Oct 07 2023

Keywords

Comments

A non-subset-sum of a set summing to n is a positive integer up to n that is not the sum of any subset. For example, the non-subset-sums of {1,3,4} are {2,6}.

Examples

			The a(1) = 1 through a(8) = 11 sets:
  {2}  {3}    {4}    {5}      {6}      {7}      {8}        {9}
       {1,3}  {1,4}  {2,3}    {2,4}    {2,5}    {2,6}      {2,7}
                     {1,5}    {1,6}    {3,4}    {3,5}      {3,6}
                     {1,2,5}  {1,2,6}  {1,7}    {1,8}      {4,5}
                                       {1,3,4}  {1,3,5}    {2,3,4}
                                       {1,2,7}  {1,2,8}    {1,9}
                                                {1,2,3,8}  {1,3,6}
                                                           {1,4,5}
                                                           {1,2,9}
                                                           {1,2,3,9}
                                                           {1,2,4,9}
		

Crossrefs

For least instead of greatest: A188431, non-strict A126796 (ranks A325781).
The version counting multisets instead of sets is A366127.
These sets counted by sum are A365924, strict A365831.
A046663 counts partitions without a submultiset summing k, strict A365663.
A325799 counts non-subset-sums of prime indices.
A365923 counts partitions by number of non-subset-sums, strict A365545.

Programs

  • Mathematica
    nmz[y_]:=Complement[Range[Total[y]], Total/@Subsets[y]];
    Table[Length[Select[Join@@IntegerPartitions/@Range[n,2*n], UnsameQ@@#&&Max@@nmz[#]==n&]],{n,15}]

Extensions

a(31)-a(42) from Erich Friedman, Nov 13 2024

A367108 Triangle read by rows where T(n,k) is the number of integer partitions of n with a unique submultiset summing to k.

Original entry on oeis.org

1, 1, 1, 2, 1, 2, 3, 2, 2, 3, 5, 3, 2, 3, 5, 7, 5, 4, 4, 5, 7, 11, 7, 6, 3, 6, 7, 11, 15, 11, 8, 7, 7, 8, 11, 15, 22, 15, 12, 10, 4, 10, 12, 15, 22, 30, 22, 16, 14, 12, 12, 14, 16, 22, 30, 42, 30, 22, 17, 17, 6, 17, 17, 22, 30, 42, 56, 42, 30, 25, 23, 20, 20, 23, 25, 30, 42, 56
Offset: 1

Views

Author

Gus Wiseman, Nov 18 2023

Keywords

Examples

			Triangle begins:
   1
   1   1
   2   1   2
   3   2   2   3
   5   3   2   3   5
   7   5   4   4   5   7
  11   7   6   3   6   7  11
  15  11   8   7   7   8  11  15
  22  15  12  10   4  10  12  15  22
  30  22  16  14  12  12  14  16  22  30
  42  30  22  17  17   6  17  17  22  30  42
  56  42  30  25  23  20  20  23  25  30  42  56
  77  56  40  31  30  27   7  27  30  31  40  56  77
Row n = 5 counts the following partitions:
  (5)      (41)     (32)     (32)     (41)     (5)
  (41)     (311)    (311)    (311)    (311)    (41)
  (32)     (221)    (221)    (221)    (221)    (32)
  (311)    (2111)   (11111)  (11111)  (2111)   (311)
  (221)    (11111)                    (11111)  (221)
  (2111)                                       (2111)
  (11111)                                      (11111)
Row n = 6 counts the following partitions:
  (6)       (51)      (42)      (33)      (42)      (51)      (6)
  (51)      (411)     (411)     (2211)    (411)     (411)     (51)
  (42)      (321)     (321)     (111111)  (321)     (321)     (42)
  (411)     (3111)    (3111)              (3111)    (3111)    (411)
  (33)      (2211)    (222)               (222)     (2211)    (33)
  (321)     (21111)   (111111)            (111111)  (21111)   (321)
  (3111)    (111111)                                (111111)  (3111)
  (222)                                                       (222)
  (2211)                                                      (2211)
  (21111)                                                     (21111)
  (111111)                                                    (111111)
		

Crossrefs

Columns k = 0 and k = n are A000041(n).
Column k = 1 and k = n-1 are A000041(n-1).
Column k = 2 appears to be 2*A027336(n).
The version for non-subset-sums is A046663, strict A365663.
Diagonal n = 2k is A108917, complement A366754.
Row sums are A304796, non-unique version A304792.
The non-unique version is A365543.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n], Count[Total/@Union[Subsets[#]], k]==1&]], {n,0,10}, {k,0,n}]

Formula

A367094(n,1) = A108917(n).

A367412 Triangle read by rows with all zeros removed where T(n,k) is the number of integer partitions of n with k different semi-sums.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 3, 1, 1, 3, 3, 1, 5, 3, 2, 1, 4, 7, 2, 1, 1, 6, 7, 6, 2, 1, 6, 10, 6, 7, 1, 7, 12, 11, 8, 3, 1, 6, 16, 11, 17, 3, 2, 1, 10, 14, 20, 19, 10, 2, 1, 1, 7, 22, 17, 31, 14, 7, 2, 1, 9, 22, 27, 37, 22, 11, 6, 1, 10, 24, 27, 51, 32, 16, 15
Offset: 0

Views

Author

Gus Wiseman, Nov 19 2023

Keywords

Comments

We define a semi-sum of a multiset to be any sum of a 2-element submultiset. This is different from sums of pairs of elements. For example, 2 is the sum of a pair of elements of {1}, but there are no semi-sums.

Examples

			Triangle begins:
  1
  1  1
  1  2
  1  3  1
  1  3  3
  1  5  3  2
  1  4  7  2  1
  1  6  7  6  2
  1  6 10  6  7
  1  7 12 11  8  3
  1  6 16 11 17  3  2
  1 10 14 20 19 10  2  1
  1  7 22 17 31 14  7  2
  1  9 22 27 37 22 11  6
  1 10 24 27 51 32 16 15
  1 11 27 39 57 43 27 22  4
  1  9 33 34 79 57 36 39  7  2
  1 13 31 51 86 77 45 62 14  4  1
Row n = 9 counts the following partitions:
  (9)  (81)         (711)       (621)      (5211)
       (72)         (6111)      (531)      (4311)
       (63)         (522)       (432)      (4221)
       (54)         (51111)     (33111)    (42111)
       (333)        (441)       (222111)   (3321)
       (111111111)  (411111)    (2211111)  (32211)
                    (3222)                 (321111)
                    (3111111)
                    (22221)
                    (21111111)
		

Crossrefs

Row sums are A000041.
Column k = 1 is A088922.
The non-binary version (with zeros) is A365658.
The strict non-binary version (with zeros) is A365832.
The corresponding rank statistic is A366739.
A001358 lists semiprimes, squarefree A006881, conjugate A065119.
A126796 counts complete partitions, ranks A325781, strict A188431.
A276024 counts positive subset-sums of partitions, strict A284640.
A365924 counts incomplete partitions, ranks A365830, strict A365831.
A366738 counts semi-sums of partitions, non-binary A304792.
A366741 counts semi-sums of strict partitions, non-binary A365925.

Programs

  • Mathematica
    DeleteCases[Table[Length[Select[IntegerPartitions[n], Length[Union[Total/@Subsets[#, {2}]]]==k&]], {n,10},{k,0,n}],0,2]
Previous Showing 51-57 of 57 results.