A367772
Number of sets of nonempty subsets of {1..n} satisfying a strict version of the axiom of choice in more than one way.
Original entry on oeis.org
0, 0, 1, 23, 1105, 154941, 66072394, 88945612865, 396990456067403
Offset: 0
Non-isomorphic representatives of the a(3) = 23 set-systems:
{{1,2}}
{{1,2,3}}
{{1},{2,3}}
{{1},{1,2,3}}
{{1,2},{1,3}}
{{1,2},{1,2,3}}
{{1},{2,3},{1,2,3}}
{{1,2},{1,3},{2,3}}
{{1,2},{1,3},{1,2,3}}
For at least one choice we have
A367902.
These set-systems have ranks
A367909.
Cf.
A059201,
A102896,
A133686,
A283877,
A306445,
A323818,
A355741,
A367770,
A367862,
A367869,
A367901,
A367905.
-
Table[Length[Select[Subsets[Subsets[Range[n]]], Length[Select[Tuples[#], UnsameQ@@#&]]>1&]], {n,0,3}]
A367917
BII-numbers of set-systems with the same number of edges as covered vertices.
Original entry on oeis.org
0, 1, 2, 3, 5, 6, 8, 9, 10, 11, 13, 14, 17, 19, 21, 22, 24, 26, 28, 34, 35, 37, 38, 40, 41, 44, 49, 50, 52, 56, 67, 69, 70, 73, 74, 76, 81, 82, 84, 88, 97, 98, 100, 104, 112, 128, 129, 130, 131, 133, 134, 136, 137, 138, 139, 141, 142, 145, 147, 149, 150, 152
Offset: 1
The terms together with the corresponding set-systems begin:
0: {}
1: {{1}}
2: {{2}}
3: {{1},{2}}
5: {{1},{1,2}}
6: {{2},{1,2}}
8: {{3}}
9: {{1},{3}}
10: {{2},{3}}
11: {{1},{2},{3}}
13: {{1},{1,2},{3}}
14: {{2},{1,2},{3}}
17: {{1},{1,3}}
19: {{1},{2},{1,3}}
21: {{1},{1,2},{1,3}}
22: {{2},{1,2},{1,3}}
24: {{3},{1,3}}
26: {{2},{3},{1,3}}
28: {{1,2},{3},{1,3}}
34: {{2},{2,3}}
35: {{1},{2},{2,3}}
37: {{1},{1,2},{2,3}}
A070939 gives length of binary expansion.
A136556 counts set-systems on {1..n} with n edges.
Cf.
A057500,
A059201,
A072639,
A096111,
A116508,
A309326,
A326031,
A326702,
A326753,
A326754,
A367770,
A367902,
A367905.
-
bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n, 2]],1];
Select[Range[0,100], Length[bpe[#]]==Length[Union@@bpe/@bpe[#]]&]
A369196
Number of labeled loop-graphs with n vertices and at most as many edges as covered vertices.
Original entry on oeis.org
1, 2, 7, 39, 320, 3584, 51405, 900947, 18661186, 445827942, 12062839691, 364451604095, 12157649050827, 443713171974080, 17583351295466338, 751745326170662049, 34485624653535808340, 1689485711682987916502, 88030098291829749593643, 4860631073631586486397141
Offset: 0
The a(0) = 1 through a(2) = 7 loop-graphs:
{} {} {}
{{1}} {{1}}
{{2}}
{{1,2}}
{{1},{2}}
{{1},{1,2}}
{{2},{1,2}}
A006125 counts simple graphs, also loop-graphs if shifted left.
A054548 counts graphs covering n vertices with k edges, with loops
A369199.
-
Table[Length[Select[Subsets[Subsets[Range[n],{1,2}]],Length[#]<=Length[Union@@#]&]],{n,0,5}]
A369193
Number of labeled simple graphs with n vertices and at most as many edges as covered (non-isolated) vertices.
Original entry on oeis.org
1, 1, 2, 8, 57, 608, 8614, 151365, 3162353, 76359554, 2088663444, 63760182536, 2147325661180, 79051734050283, 3157246719905273, 135938652662043977, 6275929675565965599, 309242148569525451140, 16197470691388774460758, 898619766673014862321176, 52639402023471657682257626
Offset: 0
The a(0) = 1 through a(3) = 8 graphs:
{} {} {} {}
{{1,2}} {{1,2}}
{{1,3}}
{{2,3}}
{{1,2},{1,3}}
{{1,2},{2,3}}
{{1,3},{2,3}}
{{1,2},{1,3},{2,3}}
The version counting all vertices is
A369192.
The version for loop-graphs is
A369196, counting all vertices
A066383.
A054548 counts graphs covering n vertices with k edges, with loops
A369199.
-
Table[Length[Select[Subsets[Subsets[Range[n],{2}]], Length[#]<=Length[Union@@#]&]],{n,0,5}]
A368186
Number of n-covers of an unlabeled n-set.
Original entry on oeis.org
1, 1, 2, 9, 87, 1973, 118827, 20576251, 10810818595, 17821875542809, 94589477627232498, 1651805220868992729874, 96651473179540769701281003, 19238331716776641088273777321428, 13192673305726630096303157068241728202, 31503323006770789288222386469635474844616195
Offset: 0
Non-isomorphic representatives of the a(1) = 1 through a(3) = 9 set-systems:
{{1}} {{1},{2}} {{1},{2},{3}}
{{1},{1,2}} {{1},{2},{1,3}}
{{1},{1,2},{1,3}}
{{1},{1,2},{2,3}}
{{1},{2},{1,2,3}}
{{1},{1,2},{1,2,3}}
{{1,2},{1,3},{2,3}}
{{1},{2,3},{1,2,3}}
{{1,2},{1,3},{1,2,3}}
Covers with any number of edges are counted by
A003465, unlabeled
A055621.
Cf.
A000088,
A002494,
A006126,
A055130,
A133686,
A140638,
A305000,
A317795,
A326754,
A367901,
A367902,
A367903.
-
brute[m_]:=Table[Sort[Sort/@(m/.Rule@@@Table[{i, p[[i]]},{i,Length[p]}])], {p,Permutations[Union@@m]}];
Table[Length[Union[First[Sort[brute[#]]]& /@ Select[Subsets[Rest[Subsets[Range[n]]],{n}], Union@@#==Range[n]&]]], {n,0,3}]
-
permcount(v) = {my(m=1, s=0, k=0, t); for(i=1, #v, t=v[i]; k=if(i>1&&t==v[i-1], k+1, 1); m*=t*k; s+=t); s!/m}
K(q, t)={2^sum(j=1, #q, gcd(t, q[j])) - 1}
G(n,m)={if(n==0, 1, my(s=0); forpart(q=n, my(g=sum(t=1, m, K(q,t)*x^t/t, O(x*x^m))); s+=permcount(q)*exp(g - subst(g,x,x^2))); s/n!)}
a(n)=if(n ==0, 1, polcoef(G(n,n) - G(n-1,n), n)) \\ Andrew Howroyd, Jan 03 2024
A369201
Number of unlabeled simple graphs with n vertices and n edges such that it is not possible to choose a different vertex from each edge (non-choosable).
Original entry on oeis.org
0, 0, 0, 0, 0, 1, 7, 30, 124, 507, 2036, 8216, 33515, 138557, 583040, 2503093, 10985364, 49361893, 227342301, 1073896332, 5204340846, 25874724616, 131937166616, 689653979583, 3693193801069, 20247844510508, 113564665880028, 651138092719098, 3813739129140469
Offset: 0
The a(0) = 0 through a(6) = 7 simple graphs:
. . . . . {{12}{13}{14}{23}{24}} {{12}{13}{14}{15}{23}{24}}
{{12}{13}{14}{15}{23}{45}}
{{12}{13}{14}{23}{24}{34}}
{{12}{13}{14}{23}{24}{35}}
{{12}{13}{14}{23}{24}{56}}
{{12}{13}{14}{23}{25}{45}}
{{12}{13}{14}{25}{35}{45}}
For labeled set-systems we have
A368600.
A054548 counts graphs covering n vertices with k edges, with loops
A369199.
-
brute[m_]:=First[Sort[Table[Sort[Sort/@(m/.Rule@@@Table[{(Union@@m)[[i]],p[[i]]},{i,Length[p]}])],{p,Permutations[Range[Length[Union@@m]]]}]]];
Table[Length[Union[brute/@Select[Subsets[Subsets[Range[n],{2}],{n}],Select[Tuples[#],UnsameQ@@#&]=={}&]]],{n,0,5}]
A370316
Number of unlabeled simple graphs covering n vertices with at most n edges.
Original entry on oeis.org
1, 0, 1, 2, 5, 10, 28, 68, 193, 534, 1568, 4635, 14146, 43610, 137015, 435227, 1400058, 4547768, 14917504, 49348612, 164596939, 553177992, 1872805144, 6385039022, 21917878860, 75739158828, 263438869515, 922219844982, 3249042441125, 11519128834499, 41097058489426
Offset: 0
The a(0) = 1 through a(5) = 10 simple graphs:
{} . {12} {12-13} {12-34} {12-13-45}
{12-13-23} {12-13-14} {12-13-14-15}
{12-13-24} {12-13-14-25}
{12-13-14-23} {12-13-23-45}
{12-13-24-34} {12-13-24-35}
{12-13-14-15-23}
{12-13-14-23-25}
{12-13-14-23-45}
{12-13-14-25-35}
{12-13-24-35-45}
-
brute[m_]:=First[Sort[Table[Sort[Sort /@ (m/.Rule@@@Table[{(Union@@m)[[i]],p[[i]]},{i,Length[p]}])], {p,Permutations[Range[Length[Union@@m]]]}]]];
Table[Length[Union[brute /@ Select[Subsets[Subsets[Range[n],{2}],{0,n}], Union@@#==Range[n]&]]],{n,0,5}]
-
\\ G defined in A008406.
a(n)=my(A=O(x*x^n)); if(n==0, 1, polcoef((G(n,A)-G(n-1,A))/(1-x), n)) \\ Andrew Howroyd, Feb 19 2024
A368731
Number of non-isomorphic n-element sets of nonempty subsets of {1..n}.
Original entry on oeis.org
1, 1, 2, 10, 97, 2160, 126862, 21485262, 11105374322, 18109358131513, 95465831661532570, 1660400673336788987026, 96929369602251313489896310, 19268528295096123543660356281600, 13203875101002459910158494602665950757, 31517691852305548841992346407978317698725021
Offset: 0
Non-isomorphic representatives of the a(3) = 10 set-systems:
{{1},{2},{3}}
{{1},{2},{1,2}}
{{1},{2},{1,3}}
{{1},{2},{1,2,3}}
{{1},{1,2},{1,3}}
{{1},{1,2},{2,3}}
{{1},{1,2},{1,2,3}}
{{1},{2,3},{1,2,3}}
{{1,2},{1,3},{2,3}}
{{1,2},{1,3},{1,2,3}}
The case of labeled covering graphs is
A367863, binomial transform
A367862.
These include the set-systems ranked by
A367917.
Requiring all edges to be singletons or pairs gives
A368598.
-
brute[m_]:=First[Sort[Table[Sort[Sort /@ (m/.Rule@@@Table[{(Union@@m)[[i]],p[[i]]},{i,Length[p]}])], {p,Permutations[Range[Length[Union@@m]]]}]]];
Table[Length[Union[brute /@ Subsets[Subsets[Range[n],{1,n}],{n}]]],{n,0,4}]
-
a(n) = polcoef(G(n, n), n) \\ G defined in A368186. - Andrew Howroyd, Jan 11 2024
A370318
Number of labeled simple graphs with n vertices and the same number of edges as covered vertices, such that the edge set is connected.
Original entry on oeis.org
0, 0, 0, 1, 19, 307, 5237, 99137, 2098946, 49504458, 1291570014, 37002273654, 1156078150969, 39147186978685, 1428799530304243, 55933568895261791, 2338378885159906196, 103995520598384132516, 4903038902046860966220, 244294315694676224001852, 12827355456239840407125363
Offset: 0
The covering case is
A057500, which is also the covering case of
A370317.
A062734 counts connected graphs by edge count.
A143543 counts simple labeled graphs by number of connected components.
-
csm[s_]:=With[{c=Select[Subsets[Range[Length[s]],{2}], Length[Intersection@@s[[#]]]>0&]},If[c=={},s, csm[Sort[Append[Delete[s,List/@c[[1]]], Union@@s[[c[[1]]]]]]]]];
Table[Length[Select[Subsets[Subsets[Range[n], {2}]],Length[#]==Length[Union@@#] && Length[csm[#]]==1&]],{n,0,5}]
-
\\ Compare A370317; use A057500 for efficiency.
a(n)=n!*polcoef(polcoef(exp(x*y + O(x*x^n))*(-x+log(sum(k=0, n, (1 + y + O(y*y^n))^binomial(k, 2)*x^k/k!, O(x*x^n)))), n), n) \\ Andrew Howroyd, Feb 19 2024
A368602
Triangle read by rows where T(n,k) is the number of labeled acyclic digraphs on {1..n} with sinks {1..k}.
Original entry on oeis.org
1, 0, 1, 0, 1, 1, 0, 5, 3, 1, 0, 79, 33, 7, 1, 0, 3377, 1071, 161, 15, 1, 0, 362431, 92289, 10591, 705, 31, 1, 0, 93473345, 19856703, 1832705, 93375, 2945, 63, 1, 0, 56272471039, 10249747713, 789619327, 32382465, 782719, 12033, 127, 1
Offset: 0
Triangle begins:
1
0 1
0 1 1
0 5 3 1
0 79 33 7 1
0 3377 1071 161 15 1
...
Row n = 3 counts the following set-systems:
{{1},{1,2},{1,3}} {{1},{2},{1,3}} {{1},{2},{3}}
{{1},{1,2},{2,3}} {{1},{2},{2,3}}
{{1},{1,3},{2,3}} {{1},{2},{1,2,3}}
{{1},{1,2},{1,2,3}}
{{1},{1,3},{1,2,3}}
For any choice of k sinks we get
A361718.
A059201 counts covering T_0 set-systems.
Cf.
A000169,
A003024,
A003087,
A082402,
A088957,
A334282,
A367862,
A367904,
A367908,
A368600,
A368601.
-
Table[Length[Select[Subsets[Subsets[Range[n]],{n}], Union@@Cases[#,{_}]==Range[k] && Length[Select[Tuples[#],UnsameQ@@#&]]==1&]], {n,0,3},{k,0,n}]
Comments