cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-50 of 72 results. Next

A370587 Number of subsets of {1..n} containing n such that it is not possible to choose a different prime factor of each element (non-choosable).

Original entry on oeis.org

0, 1, 1, 2, 6, 10, 24, 44, 116, 236, 468, 908, 1960, 3776, 7812, 15876, 32504, 63744, 130104, 257592, 521152, 1042976, 2087096, 4166408, 8376816, 16760832, 33507744, 67089280, 134169440, 268236928, 536759984, 1073233840, 2147384000, 4294503744, 8589075216, 17179048048
Offset: 0

Views

Author

Gus Wiseman, Feb 28 2024

Keywords

Examples

			The a(0) = 0 through a(5) = 10 subsets:
  .  {1}  {1,2}  {1,3}    {1,4}      {1,5}
                 {1,2,3}  {2,4}      {1,2,5}
                          {1,2,4}    {1,3,5}
                          {1,3,4}    {1,4,5}
                          {2,3,4}    {2,4,5}
                          {1,2,3,4}  {1,2,3,5}
                                     {1,2,4,5}
                                     {1,3,4,5}
                                     {2,3,4,5}
                                     {1,2,3,4,5}
		

Crossrefs

First differences of A370583, complement A370582, cf. A370584.
The complement is counted by A370586.
For a unique choice we have A370588.
For binary indices instead of factors we have A370639, complement A370589.
A006530 gives greatest prime factor, least A020639.
A027746 lists prime factors, indices A112798, length A001222.
A355741 counts choices of a prime factor of each prime index.
A367902 counts choosable set-systems, ranks A367906, unlabeled A368095.
A367903 counts non-choosable set-systems, ranks A367907, unlabeled A368094.
A368098 counts choosable unlabeled multiset partitions, complement A368097.
A368100 ranks choosable multisets, complement A355529.
A368414 counts choosable factorizations, complement A368413.
A370585 counts maximal choosable sets.
A370592 counts choosable partitions, complement A370593.

Programs

  • Mathematica
    Table[Length[Select[Subsets[Range[n]],MemberQ[#,n] && Length[Select[Tuples[If[#==1,{},First/@FactorInteger[#]]&/@#], UnsameQ@@#&]]==0&]],{n,0,10}]

Extensions

More terms from Jinyuan Wang, Mar 28 2025

A367772 Number of sets of nonempty subsets of {1..n} satisfying a strict version of the axiom of choice in more than one way.

Original entry on oeis.org

0, 0, 1, 23, 1105, 154941, 66072394, 88945612865, 396990456067403
Offset: 0

Views

Author

Gus Wiseman, Dec 12 2023

Keywords

Comments

The axiom of choice says that, given any set of nonempty sets Y, it is possible to choose a set containing an element from each. The strict version requires this set to have the same cardinality as Y, meaning no element is chosen more than once.

Examples

			Non-isomorphic representatives of the a(3) = 23 set-systems:
  {{1,2}}
  {{1,2,3}}
  {{1},{2,3}}
  {{1},{1,2,3}}
  {{1,2},{1,3}}
  {{1,2},{1,2,3}}
  {{1},{2,3},{1,2,3}}
  {{1,2},{1,3},{2,3}}
  {{1,2},{1,3},{1,2,3}}
		

Crossrefs

For at least one choice we have A367902.
For no choices we have A367903, no singletons A367769, ranks A367907.
For a unique choice we have A367904, ranks A367908.
These set-systems have ranks A367909.
A000372 counts antichains, covering A006126, nonempty A014466.
A003465 counts covering set-systems, unlabeled A055621.
A058891 counts set-systems, unlabeled A000612.

Programs

  • Mathematica
    Table[Length[Select[Subsets[Subsets[Range[n]]], Length[Select[Tuples[#], UnsameQ@@#&]]>1&]], {n,0,3}]

Formula

A367903(n) + A367904(n) + a(n) = A058891(n).

Extensions

a(5)-a(8) from Christian Sievers, Jul 26 2024

A368409 Number of non-isomorphic connected set-systems of weight n contradicting a strict version of the axiom of choice.

Original entry on oeis.org

0, 0, 0, 0, 1, 0, 3, 5, 16, 41, 130
Offset: 0

Views

Author

Gus Wiseman, Dec 25 2023

Keywords

Comments

A set-system is a finite set of finite nonempty sets. The weight of a set-system is the sum of cardinalities of its elements. Weight is generally not the same as number of vertices.
The axiom of choice says that, given any set of nonempty sets Y, it is possible to choose a set containing an element from each. The strict version requires this set to have the same cardinality as Y, meaning no element is chosen more than once.

Examples

			Non-isomorphic representatives of the a(4) = 1 through a(8) = 16 set-systems:
  {1}{2}{12}  .  {1}{2}{13}{23}  {1}{3}{23}{123}    {1}{5}{15}{2345}
                 {1}{2}{3}{123}  {1}{4}{14}{234}    {2}{13}{23}{123}
                 {2}{3}{13}{23}  {2}{3}{23}{123}    {3}{13}{23}{123}
                                 {3}{12}{13}{23}    {3}{4}{34}{1234}
                                 {1}{2}{3}{13}{23}  {1}{2}{13}{24}{34}
                                                    {1}{2}{3}{14}{234}
                                                    {1}{2}{3}{23}{123}
                                                    {1}{2}{3}{4}{1234}
                                                    {1}{3}{4}{14}{234}
                                                    {2}{3}{12}{13}{23}
                                                    {2}{3}{13}{24}{34}
                                                    {2}{3}{14}{24}{34}
                                                    {2}{3}{4}{14}{234}
                                                    {2}{4}{13}{24}{34}
                                                    {3}{4}{13}{24}{34}
                                                    {3}{4}{14}{24}{34}
		

Crossrefs

For unlabeled graphs we have A140636, connected case of A140637.
For labeled graphs: A140638, connected case of A367867 (complement A133686).
This is the connected case of A368094.
The complement is A368410, connected case of A368095.
Allowing repeats: A368411, connected case of A368097, ranks A355529.
Complement with repeats: A368412, connected case of A368098, ranks A368100.
Allowing repeat edges only: connected case of A368421 (complement A368422).
A000110 counts set partitions, non-isomorphic A000041.
A003465 counts covering set-systems, unlabeled A055621.
A007716 counts non-isomorphic multiset partitions, connected A007718.
A058891 counts set-systems, unlabeled A000612, connected A323818.
A283877 counts non-isomorphic set-systems, connected A300913.

Programs

  • Mathematica
    sps[{}]:={{}}; sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]& /@ sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    mpm[n_]:=Join@@Table[Union[Sort[Sort /@ (#/.x_Integer:>s[[x]])]&/@sps[Range[n]]],{s,Flatten[MapIndexed[Table[#2, {#1}]&,#]]&/@IntegerPartitions[n]}];
    brute[m_]:=First[Sort[Table[Sort[Sort/@(m/.Rule@@@Table[{i,p[[i]]}, {i,Length[p]}])],{p,Permutations[Union@@m]}]]];
    csm[s_]:=With[{c=Select[Subsets[Range[Length[s]], {2}],Length[Intersection@@s[[#]]]>0&]}, If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]], Union@@s[[c[[1]]]]]]]]];
    Table[Length[Union[brute/@Select[mpm[n], UnsameQ@@#&&And@@UnsameQ@@@#&&Length[csm[#]]==1&&Select[Tuples[#], UnsameQ@@#&]=={}&]]],{n,0,6}]

A368730 Number of n-element sets of singletons or pairs of distinct elements of {1..n} with union {1..n}, or loop-graphs covering n vertices with n edges, such that it is not possible to choose a different element from each.

Original entry on oeis.org

0, 0, 0, 0, 6, 180, 4560, 117600, 3234588, 96119982, 3092585310, 107542211535, 4029055302855, 162040513972623, 6970457656110039, 319598974394563500, 15568332397812799920, 803271954062642638830, 43778508937914677872788, 2513783434620146896920843
Offset: 0

Views

Author

Gus Wiseman, Jan 04 2024

Keywords

Comments

The axiom of choice says that, given any set of nonempty sets Y, it is possible to choose a set containing an element from each. The strict version requires this set to have the same cardinality as Y, meaning no element is chosen more than once.

Examples

			The a(4) = 6 set-systems:
  {{1},{2},{1,2},{3,4}}
  {{1},{3},{1,3},{2,4}}
  {{1},{4},{1,4},{2,3}}
  {{2},{3},{1,4},{2,3}}
  {{2},{4},{1,3},{2,4}}
  {{3},{4},{1,2},{3,4}}
		

Crossrefs

The case of a unique choice appears to be A000272.
The version without the choice condition is A368597, non-covering A014068.
The complement appears to be A333331.
The non-covering case is A368596, allowing edges of any size A368600.
Allowing any number of edges of any size gives A367903, ranks A367907.
Allowing any number of non-singletons gives A367868, non-covering A367867.
A000085 counts set partitions into singletons or pairs.
A006125 counts graphs, unlabeled A000088.
A006129 counts covering graphs, unlabeled A002494.
A100861 counts set partitions into singletons or pairs by number of pairs.
A111924 counts set partitions into singletons or pairs by length.
A322661 counts labeled covering half-loop-graphs, connected A062740.

Programs

  • Mathematica
    Table[Length[Select[Subsets[Subsets[Range[n],{1,2}], {n}],Union@@#==Range[n] && Length[Select[Tuples[#],UnsameQ@@#&]]==0&]],{n,0,5}]

Formula

a(n) = A368596(n) + A368597(n) - A014068(n). - Andrew Howroyd, Jan 10 2024

Extensions

Terms a(7) and beyond from Andrew Howroyd, Jan 10 2024

A370640 Number of maximal subsets of {1..n} such that it is possible to choose a different binary index of each element.

Original entry on oeis.org

1, 1, 1, 3, 3, 8, 17, 32, 32, 77, 144, 242, 383, 580, 843, 1201, 1201, 2694, 4614, 7096, 10219, 14186, 19070, 25207, 32791, 42160, 53329, 66993, 82811, 101963, 124381, 151286, 151286, 324695, 526866, 764438, 1038089, 1358129, 1725921, 2154668, 2640365, 3202985
Offset: 0

Views

Author

Gus Wiseman, Mar 10 2024

Keywords

Comments

A binary index of n is any position of a 1 in its reversed binary expansion. The binary indices of n are row n of A048793.
Also choices of A070939(n) elements of {1..n} such that it is possible to choose a different binary index of each.

Examples

			The a(0) = 1 through a(6) = 17 subsets:
  {}  {1}  {1,2}  {1,2}  {1,2,4}  {1,2,4}  {1,2,4}
                  {1,3}  {1,3,4}  {1,2,5}  {1,2,5}
                  {2,3}  {2,3,4}  {1,3,4}  {1,2,6}
                                  {1,3,5}  {1,3,4}
                                  {2,3,4}  {1,3,5}
                                  {2,3,5}  {1,3,6}
                                  {2,4,5}  {1,4,6}
                                  {3,4,5}  {1,5,6}
                                           {2,3,4}
                                           {2,3,5}
                                           {2,3,6}
                                           {2,4,5}
                                           {2,5,6}
                                           {3,4,5}
                                           {3,4,6}
                                           {3,5,6}
                                           {4,5,6}
The a(0) = 1 through a(6) = 17 set-systems:
    {1}  {1}{2}  {1}{2}   {1}{2}{3}   {1}{2}{3}    {1}{2}{3}
                 {1}{12}  {1}{12}{3}  {1}{12}{3}   {1}{12}{3}
                 {2}{12}  {2}{12}{3}  {1}{2}{13}   {1}{2}{13}
                                      {2}{12}{3}   {1}{2}{23}
                                      {2}{3}{13}   {1}{3}{23}
                                      {1}{12}{13}  {2}{12}{3}
                                      {12}{3}{13}  {2}{3}{13}
                                      {2}{12}{13}  {1}{12}{13}
                                                   {1}{12}{23}
                                                   {1}{13}{23}
                                                   {12}{3}{13}
                                                   {12}{3}{23}
                                                   {2}{12}{13}
                                                   {2}{12}{23}
                                                   {2}{13}{23}
                                                   {3}{13}{23}
                                                   {12}{13}{23}
		

Crossrefs

Dominated by A357812.
The version for set-systems is A368601, max of A367902 (complement A367903).
For prime indices we have A370585, with n A370590, see also A370591.
This is the maximal case of A370636 (complement A370637).
The case of a unique choice is A370638.
The case containing n is A370641, non-maximal A370639.
A048793 lists binary indices, A000120 length, A272020 reverse, A029931 sum.
A058891 counts set-systems, A003465 covering, A323818 connected.
A070939 gives length of binary expansion.
A096111 gives product of binary indices.
A307984 counts Q-bases of logarithms of positive integers.
A355741 counts choices of a prime factor of each prime index.

Programs

  • Mathematica
    bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
    Table[Length[Select[Subsets[Range[n],{IntegerLength[n,2]}], Select[Tuples[bpe/@#],UnsameQ@@#&]!={}&]],{n,0,10}]
  • PARI
    lista(nn) = my(b, m=Map(Mat([[[]], 1])), t, u, v, w, z); for(n=0, nn, t=Mat(m)~; b=Vecrev(binary(n)); u=select(i->b[i], [1..#b]); for(i=1, #t, v=t[1, i]; w=List([]); for(j=1, #v, for(k=1, #u, if(!setsearch(v[j], u[k]), listput(w, setunion(v[j], [u[k]]))))); w=Set(w); if(#w, z=0; mapisdefined(m, w, &z); mapput(m, w, z+t[2, i]))); print1(mapget(m, [[1..#b]]), ", ")); \\ Jinyuan Wang, Mar 28 2025

Extensions

More terms from Jinyuan Wang, Mar 28 2025

A368187 Divisor-minimal numbers whose prime indices of prime indices contradict a strict version of the axiom of choice.

Original entry on oeis.org

2, 9, 21, 25, 49, 57, 115, 121, 133, 159, 195, 289, 361, 371, 393, 455, 507, 515, 529, 555, 845, 897, 915, 917, 933, 957, 961, 1007, 1067, 1183, 1235, 1295, 1335, 1443, 1681, 2093, 2095, 2135, 2157, 2177, 2193, 2197, 2233, 2265, 2343, 2369, 2379, 2405, 2489
Offset: 1

Views

Author

Gus Wiseman, Dec 29 2023

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
The axiom of choice says that, given any set of nonempty sets Y, it is possible to choose a set containing an element from each. The strict version requires this set to have the same cardinality as Y, meaning no element is chosen more than once.

Examples

			The terms together with their prime indices begin:
     2: {1}
     9: {2,2}
    21: {2,4}
    25: {3,3}
    49: {4,4}
    57: {2,8}
   115: {3,9}
   121: {5,5}
   133: {4,8}
   159: {2,16}
   195: {2,3,6}
   289: {7,7}
   361: {8,8}
   371: {4,16}
   393: {2,32}
   455: {3,4,6}
		

Crossrefs

The version for BII-numbers of set-systems is A368532.
A000110 counts set partitions, non-isomorphic A000041.
A003465 counts covering set-systems, unlabeled A055621.
A007716 counts non-isomorphic multiset partitions, connected A007718.

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n], {p_,k_}:>Table[PrimePi[p],{k}]]]];
    vmin[y_]:=Select[y,Function[s, Select[DeleteCases[y,s], Divisible[s,#]&]=={}]];
    Select[Range[100],Select[Tuples[prix /@ prix[#]],UnsameQ@@#&]=={}&]//vmin

A370639 Number of subsets of {1..n} containing n such that it is possible to choose a different binary index of each element.

Original entry on oeis.org

0, 1, 2, 3, 7, 10, 15, 22, 61, 81, 112, 154, 207, 276, 355, 464, 1771, 2166, 2724, 3445, 4246, 5292, 6420, 7922, 9586, 11667, 13768, 16606, 19095, 22825, 26498, 31421, 187223, 213684, 247670, 289181, 331301, 385079, 440411, 510124, 575266, 662625, 747521
Offset: 0

Views

Author

Gus Wiseman, Mar 08 2024

Keywords

Comments

A binary index of n is any position of a 1 in its reversed binary expansion. The binary indices of n are row n of A048793.

Examples

			The a(0) = 0 through a(6) = 15 subsets:
  .  {1}  {2}    {3}    {4}      {5}      {6}
          {1,2}  {1,3}  {1,4}    {1,5}    {1,6}
                 {2,3}  {2,4}    {2,5}    {2,6}
                        {3,4}    {3,5}    {3,6}
                        {1,2,4}  {4,5}    {4,6}
                        {1,3,4}  {1,2,5}  {5,6}
                        {2,3,4}  {1,3,5}  {1,2,6}
                                 {2,3,5}  {1,3,6}
                                 {2,4,5}  {1,4,6}
                                 {3,4,5}  {1,5,6}
                                          {2,3,6}
                                          {2,5,6}
                                          {3,4,6}
                                          {3,5,6}
                                          {4,5,6}
		

Crossrefs

Simple graphs of this type are counted by A133686, covering A367869.
Unlabeled graphs of this type are counted by A134964, complement A140637.
Simple graphs not of this type are counted by A367867, covering A367868.
Set systems of this type are counted by A367902, ranks A367906.
Set systems not of this type are counted by A367903, ranks A367907.
Set systems uniquely of this type are counted by A367904, ranks A367908.
Unlabeled multiset partitions of this type are A368098, complement A368097.
A version for MM-numbers of multisets is A368100, complement A355529.
Factorizations of this type are A368414/A370814, complement A368413/A370813.
For prime instead of binary indices we have A370586, differences of A370582.
The complement for prime indices is A370587, differences of A370583.
The complement is counted by A370589, differences of A370637.
Partial sums are A370636.
The complement has partial sums A370637/A370643, minima A370642/A370644.
The case of a unique choice is A370641, differences of A370638.
A048793 lists binary indices, A000120 length, A272020 reverse, A029931 sum.
A058891 counts set-systems, A003465 covering, A323818 connected.
A070939 gives length of binary expansion.
A096111 gives product of binary indices.
A326031 gives weight of the set-system with BII-number n.

Programs

  • Mathematica
    bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
    Table[Length[Select[Subsets[Range[n]],MemberQ[#,n] && Select[Tuples[bpe/@#],UnsameQ@@#&]!={}&]],{n,0,10}]

Formula

First differences of A370636.

Extensions

a(19)-a(42) from Alois P. Heinz, Mar 09 2024

A368422 Number of non-isomorphic set multipartitions of weight n satisfying a strict version of the axiom of choice.

Original entry on oeis.org

1, 1, 2, 4, 9, 18, 43, 95, 233, 569
Offset: 0

Views

Author

Gus Wiseman, Dec 26 2023

Keywords

Comments

A set multipartition is a finite multiset of finite nonempty sets. The weight of a set multipartition is the sum of cardinalities of its elements. Weight is generally not the same as number of vertices.
The axiom of choice says that, given any sequence of nonempty sets, it is possible to choose a sequence containing an element from each. In the strict version, the elements of this sequence must be distinct, meaning none is chosen more than once.

Examples

			Non-isomorphic representatives of the a(1) = 1 through a(5) = 18 set multipartitions:
  {{1}}  {{1,2}}    {{1,2,3}}      {{1,2,3,4}}        {{1,2,3,4,5}}
         {{1},{2}}  {{1},{2,3}}    {{1,2},{1,2}}      {{1},{2,3,4,5}}
                    {{2},{1,2}}    {{1},{2,3,4}}      {{1,2},{3,4,5}}
                    {{1},{2},{3}}  {{1,2},{3,4}}      {{1,4},{2,3,4}}
                                   {{1,3},{2,3}}      {{2,3},{1,2,3}}
                                   {{3},{1,2,3}}      {{4},{1,2,3,4}}
                                   {{1},{2},{3,4}}    {{1},{2,3},{2,3}}
                                   {{1},{3},{2,3}}    {{1},{2},{3,4,5}}
                                   {{1},{2},{3},{4}}  {{1},{2,3},{4,5}}
                                                      {{1},{2,4},{3,4}}
                                                      {{1},{4},{2,3,4}}
                                                      {{2},{1,3},{2,3}}
                                                      {{2},{3},{1,2,3}}
                                                      {{3},{1,3},{2,3}}
                                                      {{4},{1,2},{3,4}}
                                                      {{1},{2},{3},{4,5}}
                                                      {{1},{2},{4},{3,4}}
                                                      {{1},{2},{3},{4},{5}}
		

Crossrefs

The case of unlabeled graphs is A134964, complement A140637.
Set multipartitions have ranks A302478, cf. A073576.
The case of labeled graphs is A133686, complement A367867.
The complement without repeats is A368094 connected A368409.
Without repeats we have A368095, connected A368410.
The complement allowing repeats is A368097, ranks A355529.
Allowing repeated elements gives A368098, ranks A368100.
Factorizations of this type are counted by A368414, complement A368413.
The complement is counted by A368421.
A000110 counts set partitions, non-isomorphic A000041.
A003465 counts covering set-systems, unlabeled A055621.
A007716 counts non-isomorphic multiset partitions, connected A007718.
A058891 counts set-systems, unlabeled A000612, connected A323818.
A283877 counts non-isomorphic set-systems, connected A300913.

Programs

  • Mathematica
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]& /@ sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    mpm[n_]:=Join@@Table[Union[Sort[Sort /@ (#/.x_Integer:>s[[x]])]&/@sps[Range[n]]],{s,Flatten[MapIndexed[Table[#2,{#1}]&,#]]& /@ IntegerPartitions[n]}];
    brute[m_]:=First[Sort[Table[Sort[Sort /@ (m/.Rule@@@Table[{i,p[[i]]},{i,Length[p]}])], {p,Permutations[Union@@m]}]]];
    Table[Length[Union[brute /@ Select[mpm[n],And@@UnsameQ@@@#&&Select[Tuples[#], UnsameQ@@#&]!={}&]]],{n,0,6}]

A369143 Number of labeled simple graphs with n edges and n vertices such that it is not possible to choose a different vertex from each edge (non-choosable).

Original entry on oeis.org

0, 0, 0, 0, 0, 30, 1335, 47460, 1651230, 59636640, 2284113762, 93498908580, 4099070635935, 192365988161490, 9646654985111430, 515736895712230192, 29321225548502776980, 1768139644819077541440, 112805126206185257070660, 7595507651522103787077270, 538504704005397535690160274
Offset: 0

Views

Author

Gus Wiseman, Jan 21 2024

Keywords

Examples

			The term a(5) = 30 counts all permutations of the graph {{1,2},{1,3},{1,4},{2,3},{2,4}}.
		

Crossrefs

The version without the choice condition is A116508, covering A367863.
The complement is A137916.
Allowing any number of edges gives A367867, covering A367868.
The version with loops is A368596, covering A368730, unlabeled A368835.
For set-systems we have A368600, for any number of edges A367903.
The covering case is A369144.
A006125 counts simple graphs, unlabeled A000088.
A058891 counts set-systems (without singletons A016031), unlabeled A000612.

Programs

  • Mathematica
    Table[Length[Select[Subsets[Subsets[Range[n],{2}], {n}],Length[Select[Tuples[#],UnsameQ@@#&]]==0&]],{n,0,5}]

Formula

a(n) = A116508(n) - A137916(n). - Andrew Howroyd, Feb 02 2024

Extensions

a(8) onwards from Andrew Howroyd, Feb 02 2024

A370589 Number of subsets of {1..n} containing n such that it is not possible to choose a different binary index of each element.

Original entry on oeis.org

0, 0, 0, 1, 1, 6, 17, 42, 67, 175, 400, 870, 1841, 3820, 7837, 15920, 30997, 63370, 128348, 258699, 520042, 1043284, 2090732, 4186382, 8379022, 16765549, 33540664, 67092258, 134198633, 268412631, 536844414, 1073710403, 2147296425, 4294753612, 8589686922, 17179580003
Offset: 0

Views

Author

Gus Wiseman, Mar 08 2024

Keywords

Comments

A binary index of n is any position of a 1 in its reversed binary expansion. The binary indices of n are row n of A048793.

Examples

			The binary indices of {1,4,5} are {{1},{3},{1,3}}, from which it is not possible to choose three different elements, so S is counted under a(3).
The binary indices of S = {1,6,8,9} are {{1},{2,3},{4},{1,4}}, from which it is not possible to choose four different elements, so S is counted under a(9).
The a(0) = 0 through a(6) = 17 subsets:
  .  .  .  {1,2,3}  {1,2,3,4}  {1,4,5}      {2,4,6}
                               {1,2,3,5}    {1,2,3,6}
                               {1,2,4,5}    {1,2,4,6}
                               {1,3,4,5}    {1,2,5,6}
                               {2,3,4,5}    {1,3,4,6}
                               {1,2,3,4,5}  {1,3,5,6}
                                            {1,4,5,6}
                                            {2,3,4,6}
                                            {2,3,5,6}
                                            {2,4,5,6}
                                            {3,4,5,6}
                                            {1,2,3,4,6}
                                            {1,2,3,5,6}
                                            {1,2,4,5,6}
                                            {1,3,4,5,6}
                                            {2,3,4,5,6}
                                            {1,2,3,4,5,6}
		

Crossrefs

Simple graphs not of this type are counted by A133686, covering A367869.
Unlabeled graphs of this type are counted by A140637, complement A134964.
Simple graphs of this type are counted by A367867, covering A367868.
Set systems not of this type are counted by A367902, ranks A367906.
Set systems of this type are counted by A367903, ranks A367907.
Set systems uniquely not of this type are counted by A367904, ranks A367908.
Unlabeled multiset partitions of this type are A368097, complement A368098.
A version for MM-numbers of multisets is A355529, complement A368100.
Factorizations are counted by A368413/A370813, complement A368414/A370814.
The complement for prime indices is A370586, differences of A370582.
For prime indices we have A370587, differences of A370583.
Partial sums are A370637/A370643, minima A370642/A370644.
The complement is counted by A370639, partial sums A370636.
The version for a unique choice is A370641, partial sums A370638.
A048793 lists binary indices, A000120 length, A272020 reverse, A029931 sum.
A058891 counts set-systems, A003465 covering, A323818 connected.
A070939 gives length of binary expansion.
A096111 gives product of binary indices.
A326031 gives weight of the set-system with BII-number n.

Programs

  • Mathematica
    bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
    Table[Length[Select[Subsets[Range[n]],MemberQ[#,n] && Select[Tuples[bpe/@#],UnsameQ@@#&]=={}&]],{n,0,10}]

Extensions

a(19)-a(35) from Alois P. Heinz, Mar 09 2024
Previous Showing 41-50 of 72 results. Next