A370636 Number of subsets of {1..n} such that it is possible to choose a different binary index of each element.
1, 2, 4, 7, 14, 24, 39, 61, 122, 203, 315, 469, 676, 952, 1307, 1771, 3542, 5708, 8432, 11877, 16123, 21415, 27835, 35757, 45343, 57010, 70778, 87384, 106479, 129304, 155802, 187223, 374446, 588130, 835800, 1124981, 1456282, 1841361, 2281772, 2791896, 3367162
Offset: 0
Keywords
Examples
The a(0) = 1 through a(4) = 14 subsets: {} {} {} {} {} {1} {1} {1} {1} {2} {2} {2} {1,2} {3} {3} {1,2} {4} {1,3} {1,2} {2,3} {1,3} {1,4} {2,3} {2,4} {3,4} {1,2,4} {1,3,4} {2,3,4}
Links
- Wikipedia, Axiom of choice.
- Gus Wiseman, Statistics, classes, and transformations of standard compositions
Crossrefs
Programs
-
Mathematica
bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1]; Table[Length[Select[Subsets[Range[n]], Select[Tuples[bpe/@#],UnsameQ@@#&]!={}&]],{n,0,10}]
Extensions
a(19)-a(40) from Alois P. Heinz, Mar 09 2024
Comments