cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 68 results. Next

A368098 Number of non-isomorphic multiset partitions of weight n satisfying a strict version of the axiom of choice.

Original entry on oeis.org

1, 1, 3, 7, 21, 54, 165, 477, 1501, 4736, 15652
Offset: 0

Views

Author

Gus Wiseman, Dec 25 2023

Keywords

Comments

A multiset partition is a finite multiset of finite nonempty multisets. The weight of a multiset partition is the sum of cardinalities of its elements. Weight is generally not the same as number of vertices.
The axiom of choice says that, given any set of nonempty sets Y, it is possible to choose a set containing an element from each. The strict version requires this set to have the same cardinality as Y, meaning no element is chosen more than once.

Examples

			Non-isomorphic representatives of the a(1) = 1 through a(4) = 21 multiset partitions:
  {{1}}  {{1,1}}    {{1,1,1}}      {{1,1,1,1}}
         {{1,2}}    {{1,2,2}}      {{1,1,2,2}}
         {{1},{2}}  {{1,2,3}}      {{1,2,2,2}}
                    {{1},{2,2}}    {{1,2,3,3}}
                    {{1},{2,3}}    {{1,2,3,4}}
                    {{2},{1,2}}    {{1},{1,2,2}}
                    {{1},{2},{3}}  {{1,1},{2,2}}
                                   {{1,2},{1,2}}
                                   {{1},{2,2,2}}
                                   {{1,2},{2,2}}
                                   {{1},{2,3,3}}
                                   {{1,2},{3,3}}
                                   {{1},{2,3,4}}
                                   {{1,2},{3,4}}
                                   {{1,3},{2,3}}
                                   {{2},{1,2,2}}
                                   {{3},{1,2,3}}
                                   {{1},{2},{3,3}}
                                   {{1},{2},{3,4}}
                                   {{1},{3},{2,3}}
                                   {{1},{2},{3},{4}}
		

Crossrefs

The case of labeled graphs is A133686, complement A367867.
The case of unlabeled graphs is A134964, complement A140637 (apparently).
Set-systems of this type are A367902, ranks A367906, connected A368410.
The complimentary set-systems are A367903, ranks A367907, connected A368409.
For set-systems we have A368095, complement A368094.
The complement is A368097, ranks A355529.
These multiset partitions have ranks A368100.
The connected case is A368412, complement A368411.
Factorizations of this type are counted by A368414, complement A368413.
For set multipartitions we have A368422, complement A368421.
A000110 counts set partitions, non-isomorphic A000041.
A003465 counts covering set-systems, unlabeled A055621.
A007716 counts non-isomorphic multiset partitions, connected A007718.
A058891 counts set-systems, unlabeled A000612, connected A323818.
A283877 counts non-isomorphic set-systems, connected A300913.

Programs

  • Mathematica
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]& /@ sps[Complement[set,s]]] /@ Cases[Subsets[set],{i,_}];
    mpm[n_]:=Join@@Table[Union[Sort[Sort/@(#/.x_Integer:>s[[x]])]& /@ sps[Range[n]]], {s,Flatten[MapIndexed[Table[#2,{#1}]&,#]]& /@ IntegerPartitions[n]}];
    brute[m_]:=First[Sort[Table[Sort[Sort /@ (m/.Rule@@@Table[{i,p[[i]]},{i,Length[p]}])], {p,Permutations[Union@@m]}]]];
    Table[Length[Union[brute/@Select[mpm[n], Select[Tuples[#],UnsameQ@@#&]!={}&]]], {n,0,6}]

A370813 Number of non-condensed integer factorizations of n into unordered factors > 1.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 2, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 2, 1, 0, 0, 0, 0, 0, 0
Offset: 1

Views

Author

Gus Wiseman, Mar 04 2024

Keywords

Comments

A multiset is condensed iff it is possible to choose a different divisor of each element.

Examples

			The a(96) = 4 factorizations: (2*2*2*2*2*3), (2*2*2*2*6), (2*2*2*3*4), (2*2*2*12).
		

Crossrefs

Partitions not of this type are counted by A239312, ranks A368110.
Factors instead of divisors: A368413, complement A368414, unique A370645.
Partitions of this type are counted by A370320, ranks A355740.
Subsets of this type: A370583 and A370637, complement A370582 and A370636.
The complement is counted by A370814, partitions A370592, ranks A368100.
For a unique choice we have A370815, partitions A370595, ranks A370810.
A000005 counts divisors.
A001055 counts factorizations, strict A045778.
A355731 counts choices of a divisor of each prime index, firsts A355732.

Programs

  • Mathematica
    facs[n_]:=If[n<=1,{{}},Join @@ Table[Map[Prepend[#,d]&,Select[facs[n/d],Min @@ #>=d&]],{d,Rest[Divisors[n]]}]];
    Table[Length[Select[facs[n],Length[Select[Tuples[Divisors /@ #],UnsameQ@@#&]]==0&]],{n,100}]

A370320 Number of non-condensed integer partitions of n, or partitions where it is not possible to choose a different divisor of each part.

Original entry on oeis.org

0, 0, 1, 1, 2, 4, 6, 9, 13, 20, 28, 40, 54, 74, 102, 135, 180, 235, 310, 397, 516, 658, 843, 1066, 1349, 1687, 2119, 2634, 3273, 4045, 4995, 6128, 7517, 9171, 11181, 13579, 16457, 19884, 23992, 28859, 34646, 41506, 49634, 59211, 70533, 83836, 99504, 117867
Offset: 0

Views

Author

Gus Wiseman, Mar 02 2024

Keywords

Comments

Includes all partitions containing 1.

Examples

			The a(0) = 0 through a(8) = 13 partitions:
  .  .  (11)  (111)  (211)   (221)    (222)     (331)      (611)
                     (1111)  (311)    (411)     (511)      (2222)
                             (2111)   (2211)    (2221)     (3221)
                             (11111)  (3111)    (3211)     (3311)
                                      (21111)   (4111)     (4211)
                                      (111111)  (22111)    (5111)
                                                (31111)    (22211)
                                                (211111)   (32111)
                                                (1111111)  (41111)
                                                           (221111)
                                                           (311111)
                                                           (2111111)
                                                           (11111111)
		

Crossrefs

The complement is counted by A239312 (condensed partitions).
These partitions have ranks A355740.
Factorizations in the case of prime factors are A368413, complement A368414.
The complement for prime factors is A370592, ranks A368100.
The version for prime factors (not all divisors) is A370593, ranks A355529.
For a unique choice we have A370595, ranks A370810.
For multiple choices we have A370803, ranks A370811.
The case without ones is A370804, complement A370805.
The version for factorizations is A370813, complement A370814.
A000005 counts divisors.
A000041 counts integer partitions.
A027746 lists prime factors, A112798 indices, length A001222.
A355731 counts choices of a divisor of each prime index, firsts A355732.
A355741 chooses prime factors of prime indices, variations A355744, A355745.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n], Length[Select[Tuples[Divisors/@#], UnsameQ@@#&]]==0&]],{n,0,30}]

Extensions

a(31)-a(47) from Alois P. Heinz, Mar 03 2024

A370583 Number of subsets of {1..n} such that it is not possible to choose a different prime factor of each element.

Original entry on oeis.org

0, 1, 2, 4, 10, 20, 44, 88, 204, 440, 908, 1816, 3776, 7552, 15364, 31240, 63744, 127488, 257592, 515184, 1036336, 2079312, 4166408, 8332816, 16709632, 33470464, 66978208, 134067488, 268236928, 536473856, 1073233840, 2146467680, 4293851680, 8588355424, 17177430640
Offset: 0

Views

Author

Gus Wiseman, Feb 26 2024

Keywords

Examples

			The a(0) = 0 through a(5) = 20 subsets:
  .  {1}  {1}    {1}      {1}        {1}
          {1,2}  {1,2}    {1,2}      {1,2}
                 {1,3}    {1,3}      {1,3}
                 {1,2,3}  {1,4}      {1,4}
                          {2,4}      {1,5}
                          {1,2,3}    {2,4}
                          {1,2,4}    {1,2,3}
                          {1,3,4}    {1,2,4}
                          {2,3,4}    {1,2,5}
                          {1,2,3,4}  {1,3,4}
                                     {1,3,5}
                                     {1,4,5}
                                     {2,3,4}
                                     {2,4,5}
                                     {1,2,3,4}
                                     {1,2,3,5}
                                     {1,2,4,5}
                                     {1,3,4,5}
                                     {2,3,4,5}
                                     {1,2,3,4,5}
		

Crossrefs

Multisets of this type are ranked by A355529, complement A368100.
For divisors instead of factors we have A355740, complement A368110.
The complement for set-systems is A367902, ranks A367906, unlabeled A368095.
The version for set-systems is A367903, ranks A367907, unlabeled A368094.
For non-isomorphic multiset partitions we have A368097, complement A368098.
The version for factorizations is A368413, complement A368414.
The complement is counted by A370582.
For a unique choice we have A370584.
Partial sums of A370587, complement A370586.
The minimal case is A370591.
The version for partitions is A370593, complement A370592.
For binary indices instead of factors we have A370637, complement A370636.
A006530 gives greatest prime factor, least A020639.
A027746 lists prime factors, A112798 indices, length A001222.
A355741 counts choices of a prime factor of each prime index.

Programs

  • Mathematica
    Table[Length[Select[Subsets[Range[n]], Length[Select[Tuples[If[#==1,{},First/@FactorInteger[#]]&/@#], UnsameQ@@#&]]==0&]],{n,0,10}]

Formula

a(n) = 2^n - A370582(n).

Extensions

a(19)-a(34) from Alois P. Heinz, Feb 27 2024

A370636 Number of subsets of {1..n} such that it is possible to choose a different binary index of each element.

Original entry on oeis.org

1, 2, 4, 7, 14, 24, 39, 61, 122, 203, 315, 469, 676, 952, 1307, 1771, 3542, 5708, 8432, 11877, 16123, 21415, 27835, 35757, 45343, 57010, 70778, 87384, 106479, 129304, 155802, 187223, 374446, 588130, 835800, 1124981, 1456282, 1841361, 2281772, 2791896, 3367162
Offset: 0

Views

Author

Gus Wiseman, Mar 08 2024

Keywords

Comments

A binary index of n is any position of a 1 in its reversed binary expansion. The binary indices of n are row n of A048793.

Examples

			The a(0) = 1 through a(4) = 14 subsets:
  {}  {}   {}     {}     {}
      {1}  {1}    {1}    {1}
           {2}    {2}    {2}
           {1,2}  {3}    {3}
                  {1,2}  {4}
                  {1,3}  {1,2}
                  {2,3}  {1,3}
                         {1,4}
                         {2,3}
                         {2,4}
                         {3,4}
                         {1,2,4}
                         {1,3,4}
                         {2,3,4}
		

Crossrefs

Simple graphs of this type are counted by A133686, covering A367869.
Unlabeled graphs of this type are counted by A134964, complement A140637.
Simple graphs not of this type are counted by A367867, covering A367868.
Set systems of this type are counted by A367902, ranks A367906.
Set systems not of this type are counted by A367903, ranks A367907.
Set systems uniquely of this type are counted by A367904, ranks A367908.
Unlabeled multiset partitions of this type are A368098, complement A368097.
A version for MM-numbers of multisets is A368100, complement A355529.
Factorizations are counted by A368414/A370814, complement A368413/A370813.
For prime indices we have A370582, differences A370586.
The complement for prime indices is A370583, differences A370587.
The complement is A370637, differences A370589, without ones A370643.
The case of a unique choice is A370638, maxima A370640, differences A370641.
First differences are A370639.
The minimal case of the complement is A370642, without ones A370644.
A048793 lists binary indices, A000120 length, A272020 reverse, A029931 sum.
A058891 counts set-systems, A003465 covering, A323818 connected.
A070939 gives length of binary expansion.
A096111 gives product of binary indices.
A326031 gives weight of the set-system with BII-number n.

Programs

  • Mathematica
    bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
    Table[Length[Select[Subsets[Range[n]], Select[Tuples[bpe/@#],UnsameQ@@#&]!={}&]],{n,0,10}]

Formula

a(2^n - 1) = A367902(n).
Partial sums of A370639.

Extensions

a(19)-a(40) from Alois P. Heinz, Mar 09 2024

A367771 Number of ways to choose a different prime index of each prime index of 2n + 1.

Original entry on oeis.org

1, 1, 1, 2, 0, 1, 2, 1, 1, 3, 0, 2, 0, 0, 2, 1, 1, 2, 3, 1, 1, 2, 0, 2, 0, 1, 4, 1, 0, 1, 3, 0, 1, 1, 2, 3, 2, 0, 2, 2, 0, 1, 1, 1, 4, 2, 1, 3, 2, 0, 2, 3, 0, 3, 1, 1, 3, 0, 0, 2, 0, 1, 0, 1, 1, 5, 0, 0, 2, 2, 2, 2, 2, 0, 2, 4, 0, 1, 1, 0, 4, 2, 1, 2, 2, 0, 4
Offset: 0

Views

Author

Gus Wiseman, Dec 12 2023

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The prime indices of prime indices of 427 = 2*213 + 1 are {{1,1},{1,2,2}}, with four ways to choose (1,2), so a(213) = 4.
The prime indices of prime indices of 1469 = 2*734 + 1 are {{1,2},{1,2,3}}, with four choices (1,2), (1,3), (2,1), (2,3), so a(734) = 4.
		

Crossrefs

The "extended" version below includes alternating zeros at even positions.
Extended positions of zeros are A355529, binary A367907.
The extended version for binary indices is A367905.
Extended positions of nonzeros are A368100, binary A367906.
Extended positions of ones are A368101, binary A367908.
The extended version without distinctness is A355741, for multisets A355744.
A058891 counts set-systems, covering A003465, connected A323818.
A112798 lists prime indices, reverse A296150, length A001222, sum A056239.
A124010 gives prime signature, sorted A118914, length A001221, sum A001222.

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n], {p_,k_}:>Table[PrimePi[p],{k}]]]];
    Table[Length[Select[Tuples[prix/@prix[2n+1]], UnsameQ@@#&]],{n,0,100}]

A370585 Number of maximal subsets of {1..n} such that it is possible to choose a different prime factor of each element.

Original entry on oeis.org

1, 1, 1, 1, 2, 2, 5, 5, 7, 11, 25, 25, 38, 38, 84, 150, 178, 178, 235, 235, 341, 579, 1235, 1235, 1523, 1968, 4160, 4824, 6840, 6840, 9140, 9140, 10028, 16264, 33956, 48680, 56000, 56000, 116472, 186724, 223884, 223884, 290312, 290312, 403484, 484028, 1001420
Offset: 0

Views

Author

Gus Wiseman, Feb 26 2024

Keywords

Comments

First differs from A307984 at a(21) = 579, A307984(21) = 578. The difference is due to the set {10,11,13,14,15,17,19,21}, which is not a basis because log(10) + log(21) = log(14) + log(15).
Also length-pi(n) subsets of {1..n} such that it is possible to choose a different prime factor of each element.

Examples

			The a(0) = 1 through a(8) = 7 subsets:
  {}  {}  {2}  {2,3}  {2,3}  {2,3,5}  {2,3,5}  {2,3,5,7}  {2,3,5,7}
                      {3,4}  {3,4,5}  {2,5,6}  {2,5,6,7}  {2,5,6,7}
                                      {3,4,5}  {3,4,5,7}  {3,4,5,7}
                                      {3,5,6}  {3,5,6,7}  {3,5,6,7}
                                      {4,5,6}  {4,5,6,7}  {3,5,7,8}
                                                          {4,5,6,7}
                                                          {5,6,7,8}
		

Crossrefs

Multisets of this type are ranked by A368100, complement A355529.
Factorizations of this type are counted by A368414, complement A368413.
The version for set-systems is A368601, max of A367902 (complement A367903).
This is the maximal case of A370582, complement A370583, cf. A370584.
A different kind of maximality is A370586, complement A370587.
The case containing n is A370590, complement A370591.
Partitions of this type (choosable) are A370592, complement A370593.
For binary indices instead of factors we have A370640, cf. A370636, A370637.
A006530 gives greatest prime factor, least A020639.
A027746 lists prime factors, A112798 indices, length A001222.
A307984 counts Q-bases of logarithms of positive integers.
A355741 counts choices of a prime factor of each prime index.

Programs

  • Mathematica
    Table[Length[Select[Subsets[Range[n], {PrimePi[n]}],Length[Select[Tuples[If[#==1, {},First/@FactorInteger[#]]&/@#], UnsameQ@@#&]]>0&]],{n,0,10}]

Extensions

More terms from Jinyuan Wang, Feb 14 2025

A370582 Number of subsets of {1..n} such that it is possible to choose a different prime factor of each element.

Original entry on oeis.org

1, 1, 2, 4, 6, 12, 20, 40, 52, 72, 116, 232, 320, 640, 1020, 1528, 1792, 3584, 4552, 9104, 12240, 17840, 27896, 55792, 67584, 83968, 130656, 150240, 198528, 397056, 507984, 1015968, 1115616, 1579168, 2438544, 3259680, 3730368, 7460736, 11494656, 16145952, 19078464, 38156928
Offset: 0

Views

Author

Gus Wiseman, Feb 25 2024

Keywords

Examples

			The a(0) = 1 through a(6) = 20 subsets:
  {}  {}  {}   {}     {}     {}       {}
          {2}  {2}    {2}    {2}      {2}
               {3}    {3}    {3}      {3}
               {2,3}  {4}    {4}      {4}
                      {2,3}  {5}      {5}
                      {3,4}  {2,3}    {6}
                             {2,5}    {2,3}
                             {3,4}    {2,5}
                             {3,5}    {2,6}
                             {4,5}    {3,4}
                             {2,3,5}  {3,5}
                             {3,4,5}  {3,6}
                                      {4,5}
                                      {4,6}
                                      {5,6}
                                      {2,3,5}
                                      {2,5,6}
                                      {3,4,5}
                                      {3,5,6}
                                      {4,5,6}
		

Crossrefs

The version for set-systems is A367902, ranks A367906, unlabeled A368095.
The complement for set-systems is A367903, ranks A367907, unlabeled A368094.
For unlabeled multiset partitions we have A368098, complement A368097.
Multisets of this type are ranked by A368100, complement A355529.
For divisors instead of factors we have A368110, complement A355740.
The version for factorizations is A368414, complement A368413.
The complement is counted by A370583.
For a unique choice we have A370584.
The maximal case is A370585.
Partial sums of A370586, complement A370587.
The version for partitions is A370592, complement A370593.
For binary indices instead of factors we have A370636, complement A370637.
A006530 gives greatest prime factor, least A020639.
A027746 lists prime factors, A112798 indices, length A001222.
A307984 counts Q-bases of logarithms of positive integers.
A355741 counts choices of a prime factor of each prime index.

Programs

  • Mathematica
    Table[Length[Select[Subsets[Range[n]],Length[Select[Tuples[If[#==1,{},First/@FactorInteger[#]]&/@#],UnsameQ@@#&]]>0&]],{n,0,10}]

Formula

a(p) = 2 * a(p-1) for prime p. - David A. Corneth, Feb 25 2024
a(n) = 2^n - A370583(n).

Extensions

a(19) from David A. Corneth, Feb 25 2024
a(20)-a(41) from Alois P. Heinz, Feb 25 2024

A370802 Positive integers with as many prime factors (A001222) as distinct divisors of prime indices (A370820).

Original entry on oeis.org

1, 2, 6, 9, 10, 22, 25, 28, 30, 34, 42, 45, 62, 63, 66, 75, 82, 92, 98, 99, 102, 104, 110, 118, 121, 134, 140, 147, 152, 153, 156, 166, 170, 186, 210, 218, 228, 230, 232, 234, 246, 254, 260, 275, 276, 279, 289, 308, 310, 314, 315, 330, 342, 343, 344, 348, 350
Offset: 1

Views

Author

Gus Wiseman, Mar 14 2024

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
All squarefree terms are even.

Examples

			The prime indices of 1617 are {2,4,4,5}, with distinct divisors {1,2,4,5}, so 1617 is in the sequence.
The terms together with their prime indices begin:
    1: {}
    2: {1}
    6: {1,2}
    9: {2,2}
   10: {1,3}
   22: {1,5}
   25: {3,3}
   28: {1,1,4}
   30: {1,2,3}
   34: {1,7}
   42: {1,2,4}
   45: {2,2,3}
   62: {1,11}
   63: {2,2,4}
   66: {1,2,5}
   75: {2,3,3}
   82: {1,13}
   92: {1,1,9}
   98: {1,4,4}
   99: {2,2,5}
  102: {1,2,7}
  104: {1,1,1,6}
		

Crossrefs

For factors instead of divisors on the RHS we have A319899.
A version for binary indices is A367917.
For (greater than) instead of (equal) we have A370348, counted by A371171.
The RHS is A370820, for prime factors instead of divisors A303975.
Partitions of this type are counted by A371130, strict A371128.
For divisors instead of factors on LHS we have A371165, counted by A371172.
For only distinct prime factors on LHS we have A371177, counted by A371178.
Other inequalities: A371166, A371167, A371169, A371170.
A000005 counts divisors.
A001221 counts distinct prime factors.
A027746 lists prime factors, A112798 indices, length A001222.
A239312 counts divisor-choosable partitions, ranks A368110.
A355731 counts choices of a divisor of each prime index, firsts A355732.
A370320 counts non-divisor-choosable partitions, ranks A355740.

Programs

  • Mathematica
    Select[Range[100],PrimeOmega[#]==Length[Union @@ Divisors/@PrimePi/@First/@If[#==1,{},FactorInteger[#]]]&]

Formula

A001222(a(n)) = A370820(a(n)).

A370584 Number of subsets of {1..n} such that only one set can be obtained by choosing a different prime factor of each element.

Original entry on oeis.org

1, 1, 2, 4, 6, 12, 18, 36, 48, 68, 104, 208, 284, 568, 888, 1296, 1548, 3096, 3968, 7936, 10736, 15440, 24008, 48016, 58848, 73680, 114368, 132608, 176240, 352480, 449824, 899648, 994976, 1399968, 2160720, 2859584, 3296048, 6592096, 10156672, 14214576, 16892352
Offset: 0

Views

Author

Gus Wiseman, Feb 26 2024

Keywords

Comments

For example, the only choice of a different prime factor of each element of (4,5,6) is (2,5,3).

Examples

			The a(0) = 1 through a(6) = 18 subsets:
  {}  {}  {}   {}     {}     {}       {}
          {2}  {2}    {2}    {2}      {2}
               {3}    {3}    {3}      {3}
               {2,3}  {4}    {4}      {4}
                      {2,3}  {5}      {5}
                      {3,4}  {2,3}    {2,3}
                             {2,5}    {2,5}
                             {3,4}    {2,6}
                             {3,5}    {3,4}
                             {4,5}    {3,5}
                             {2,3,5}  {3,6}
                             {3,4,5}  {4,5}
                                      {4,6}
                                      {2,3,5}
                                      {2,5,6}
                                      {3,4,5}
                                      {3,5,6}
                                      {4,5,6}
		

Crossrefs

For divisors instead of factors we have A051026, cf. A368110, A355740.
The version for set-systems is A367904, ranks A367908.
Multisets of this type are ranked by A368101, cf. A368100, A355529.
For existence we have A370582, differences A370586.
For nonexistence we have A370583, differences A370587.
Maximal sets of this type are counted by A370585.
The version for partitions is A370594, cf. A370592, A370593.
For binary indices instead of factors we have A370638, cf. A370636, A370637.
The version for factorizations is A370645, cf. A368414, A368413.
For unlabeled multiset partitions we have A370646, cf. A368098, A368097.
A006530 gives greatest prime factor, least A020639.
A027746 lists prime factors, A112798 indices, length A001222.
A355741 counts ways to choose a prime factor of each prime index.

Programs

  • Mathematica
    Table[Length[Select[Subsets[Range[n]], Length[Union[Sort/@Select[Tuples[If[#==1, {},First/@FactorInteger[#]]&/@#], UnsameQ@@#&]]]==1&]],{n,0,10}]

Extensions

More terms from Jinyuan Wang, Mar 28 2025
Previous Showing 11-20 of 68 results. Next