cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 24 results. Next

A370639 Number of subsets of {1..n} containing n such that it is possible to choose a different binary index of each element.

Original entry on oeis.org

0, 1, 2, 3, 7, 10, 15, 22, 61, 81, 112, 154, 207, 276, 355, 464, 1771, 2166, 2724, 3445, 4246, 5292, 6420, 7922, 9586, 11667, 13768, 16606, 19095, 22825, 26498, 31421, 187223, 213684, 247670, 289181, 331301, 385079, 440411, 510124, 575266, 662625, 747521
Offset: 0

Views

Author

Gus Wiseman, Mar 08 2024

Keywords

Comments

A binary index of n is any position of a 1 in its reversed binary expansion. The binary indices of n are row n of A048793.

Examples

			The a(0) = 0 through a(6) = 15 subsets:
  .  {1}  {2}    {3}    {4}      {5}      {6}
          {1,2}  {1,3}  {1,4}    {1,5}    {1,6}
                 {2,3}  {2,4}    {2,5}    {2,6}
                        {3,4}    {3,5}    {3,6}
                        {1,2,4}  {4,5}    {4,6}
                        {1,3,4}  {1,2,5}  {5,6}
                        {2,3,4}  {1,3,5}  {1,2,6}
                                 {2,3,5}  {1,3,6}
                                 {2,4,5}  {1,4,6}
                                 {3,4,5}  {1,5,6}
                                          {2,3,6}
                                          {2,5,6}
                                          {3,4,6}
                                          {3,5,6}
                                          {4,5,6}
		

Crossrefs

Simple graphs of this type are counted by A133686, covering A367869.
Unlabeled graphs of this type are counted by A134964, complement A140637.
Simple graphs not of this type are counted by A367867, covering A367868.
Set systems of this type are counted by A367902, ranks A367906.
Set systems not of this type are counted by A367903, ranks A367907.
Set systems uniquely of this type are counted by A367904, ranks A367908.
Unlabeled multiset partitions of this type are A368098, complement A368097.
A version for MM-numbers of multisets is A368100, complement A355529.
Factorizations of this type are A368414/A370814, complement A368413/A370813.
For prime instead of binary indices we have A370586, differences of A370582.
The complement for prime indices is A370587, differences of A370583.
The complement is counted by A370589, differences of A370637.
Partial sums are A370636.
The complement has partial sums A370637/A370643, minima A370642/A370644.
The case of a unique choice is A370641, differences of A370638.
A048793 lists binary indices, A000120 length, A272020 reverse, A029931 sum.
A058891 counts set-systems, A003465 covering, A323818 connected.
A070939 gives length of binary expansion.
A096111 gives product of binary indices.
A326031 gives weight of the set-system with BII-number n.

Programs

  • Mathematica
    bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
    Table[Length[Select[Subsets[Range[n]],MemberQ[#,n] && Select[Tuples[bpe/@#],UnsameQ@@#&]!={}&]],{n,0,10}]

Formula

First differences of A370636.

Extensions

a(19)-a(42) from Alois P. Heinz, Mar 09 2024

A370589 Number of subsets of {1..n} containing n such that it is not possible to choose a different binary index of each element.

Original entry on oeis.org

0, 0, 0, 1, 1, 6, 17, 42, 67, 175, 400, 870, 1841, 3820, 7837, 15920, 30997, 63370, 128348, 258699, 520042, 1043284, 2090732, 4186382, 8379022, 16765549, 33540664, 67092258, 134198633, 268412631, 536844414, 1073710403, 2147296425, 4294753612, 8589686922, 17179580003
Offset: 0

Views

Author

Gus Wiseman, Mar 08 2024

Keywords

Comments

A binary index of n is any position of a 1 in its reversed binary expansion. The binary indices of n are row n of A048793.

Examples

			The binary indices of {1,4,5} are {{1},{3},{1,3}}, from which it is not possible to choose three different elements, so S is counted under a(3).
The binary indices of S = {1,6,8,9} are {{1},{2,3},{4},{1,4}}, from which it is not possible to choose four different elements, so S is counted under a(9).
The a(0) = 0 through a(6) = 17 subsets:
  .  .  .  {1,2,3}  {1,2,3,4}  {1,4,5}      {2,4,6}
                               {1,2,3,5}    {1,2,3,6}
                               {1,2,4,5}    {1,2,4,6}
                               {1,3,4,5}    {1,2,5,6}
                               {2,3,4,5}    {1,3,4,6}
                               {1,2,3,4,5}  {1,3,5,6}
                                            {1,4,5,6}
                                            {2,3,4,6}
                                            {2,3,5,6}
                                            {2,4,5,6}
                                            {3,4,5,6}
                                            {1,2,3,4,6}
                                            {1,2,3,5,6}
                                            {1,2,4,5,6}
                                            {1,3,4,5,6}
                                            {2,3,4,5,6}
                                            {1,2,3,4,5,6}
		

Crossrefs

Simple graphs not of this type are counted by A133686, covering A367869.
Unlabeled graphs of this type are counted by A140637, complement A134964.
Simple graphs of this type are counted by A367867, covering A367868.
Set systems not of this type are counted by A367902, ranks A367906.
Set systems of this type are counted by A367903, ranks A367907.
Set systems uniquely not of this type are counted by A367904, ranks A367908.
Unlabeled multiset partitions of this type are A368097, complement A368098.
A version for MM-numbers of multisets is A355529, complement A368100.
Factorizations are counted by A368413/A370813, complement A368414/A370814.
The complement for prime indices is A370586, differences of A370582.
For prime indices we have A370587, differences of A370583.
Partial sums are A370637/A370643, minima A370642/A370644.
The complement is counted by A370639, partial sums A370636.
The version for a unique choice is A370641, partial sums A370638.
A048793 lists binary indices, A000120 length, A272020 reverse, A029931 sum.
A058891 counts set-systems, A003465 covering, A323818 connected.
A070939 gives length of binary expansion.
A096111 gives product of binary indices.
A326031 gives weight of the set-system with BII-number n.

Programs

  • Mathematica
    bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
    Table[Length[Select[Subsets[Range[n]],MemberQ[#,n] && Select[Tuples[bpe/@#],UnsameQ@@#&]=={}&]],{n,0,10}]

Extensions

a(19)-a(35) from Alois P. Heinz, Mar 09 2024

A370642 Number of minimal subsets of {1..n} such that it is not possible to choose a different binary index of each element.

Original entry on oeis.org

0, 0, 0, 1, 1, 3, 9, 26, 26, 40, 82, 175, 338, 636, 1114
Offset: 0

Views

Author

Gus Wiseman, Mar 10 2024

Keywords

Comments

A binary index of n is any position of a 1 in its reversed binary expansion. The binary indices of n are row n of A048793.

Examples

			The a(0) = 0 through a(6) = 9 subsets:
  .  .  .  {1,2,3}  {1,2,3}  {1,2,3}    {1,2,3}
                             {1,4,5}    {1,4,5}
                             {2,3,4,5}  {2,4,6}
                                        {1,2,5,6}
                                        {1,3,4,6}
                                        {1,3,5,6}
                                        {2,3,4,5}
                                        {2,3,5,6}
                                        {3,4,5,6}
		

Crossrefs

For prime indices we have A370591, minima of A370583, complement A370582.
This is the minimal case of A370637, complement A370636.
The version for a unique choice is A370638, maxima A370640, diffs A370641.
The case without ones is A370644.
A048793 lists binary indices, A000120 length, A272020 reverse, A029931 sum.
A070939 gives length of binary expansion.
A096111 gives product of binary indices.
A326031 gives weight of the set-system with BII-number n.
A367902 counts choosable set-systems, ranks A367906, unlabeled A368095.
A367903 counts non-choosable set-systems, ranks A367907, unlabeled A368094.
A368100 ranks choosable multisets, complement A355529.
A370585 counts maximal choosable sets.

Programs

  • Mathematica
    bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
    fasmin[y_]:=Complement[y,Union@@Table[Union[s,#]& /@ Rest[Subsets[Complement[Union@@y,s]]],{s,y}]];
    Table[Length[fasmin[Select[Subsets[Range[n]], Select[Tuples[bpe/@#],UnsameQ@@#&]=={}&]]],{n,0,10}]

A370645 Number of integer factorizations of n into unordered factors > 1 such that only one set can be obtained by choosing a different prime factor of each factor.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 3, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 4, 1, 1, 1, 3, 1, 1, 1, 2, 2, 1, 1, 4, 1, 2, 1, 2, 1, 3, 1, 3, 1, 1, 1, 3, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 5, 1, 1, 2, 2, 1, 1, 1, 4, 1, 1, 1, 3, 1, 1, 1
Offset: 1

Views

Author

Gus Wiseman, Mar 01 2024

Keywords

Comments

All of these factorizations are co-balanced (A340596).

Examples

			The factorization f = (3*6*10) has prime factor choices (3,2,2), (3,3,2), (3,2,5), and (3,3,5), of which only (3,2,5) has all different parts, so f is counted under a(180).
The a(n) factorizations for n = 2, 12, 24, 36, 72, 120, 144, 180, 288:
  (2)  (2*6)  (3*8)   (4*9)   (8*9)   (3*5*8)   (2*72)   (4*5*9)   (3*96)
       (3*4)  (4*6)   (6*6)   (2*36)  (4*5*6)   (3*48)   (5*6*6)   (4*72)
              (2*12)  (2*18)  (3*24)  (2*3*20)  (4*36)   (2*3*30)  (6*48)
                      (3*12)  (4*18)  (2*5*12)  (6*24)   (2*5*18)  (8*36)
                              (6*12)  (2*6*10)  (8*18)   (2*6*15)  (9*32)
                                      (3*4*10)  (9*16)   (2*9*10)  (12*24)
                                                (12*12)  (3*4*15)  (16*18)
                                                         (3*5*12)  (2*144)
                                                         (3*6*10)
		

Crossrefs

Multisets of this type are ranked by A368101, see also A368100, A355529.
For nonexistence we have A368413, complement A368414.
Subsets of this type are counted by A370584, see also A370582, A370583.
Maximal sets of this type are counted by A370585.
The version for partitions is A370594, see also A370592, A370593.
Subsets of this type are counted by A370638, see also A370636, A370637.
For unlabeled multiset partitions we have A370646, also A368098, A368097.
A001055 counts factorizations, strict A045778.
A006530 gives greatest prime factor, least A020639.
A007716 counts non-isomorphic multiset partitions, connected A007718.
A027746 lists prime factors, A112798 indices, length A001222.
A058891 counts set-systems, unlabeled A000612, connected A323818.
A283877 counts non-isomorphic set-systems, connected A300913.
A355741 counts ways to choose a prime factor of each prime index.
For set-systems see A367902-A367908.

Programs

  • Mathematica
    facs[n_]:=If[n<=1,{{}},Join @@ Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]], {d,Rest[Divisors[n]]}]];
    Table[Length[Select[facs[n], Length[Union[Sort/@Select[Tuples[First /@ FactorInteger[#]&/@#], UnsameQ@@#&]]]==1&]],{n,100}]

A370647 Numbers such that only one set can be obtained by choosing a different prime factor of each prime index.

Original entry on oeis.org

1, 3, 5, 7, 11, 15, 17, 19, 23, 31, 33, 35, 39, 41, 51, 53, 55, 59, 65, 67, 69, 77, 83, 85, 87, 91, 93, 95, 97, 103, 109, 111, 119, 123, 127, 129, 131, 155, 157, 161, 165, 169, 177, 179, 183, 185, 187, 191, 201, 203, 205, 209, 211, 213, 217, 227, 235, 237, 241
Offset: 1

Views

Author

Gus Wiseman, Mar 06 2024

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The prime indices of 91 are {4,6}, with only choice {2,3}, so 91 is in the sequence.
The terms together with their prime indices begin:
     1: {}        53: {16}      109: {29}
     3: {2}       55: {3,5}     111: {2,12}
     5: {3}       59: {17}      119: {4,7}
     7: {4}       65: {3,6}     123: {2,13}
    11: {5}       67: {19}      127: {31}
    15: {2,3}     69: {2,9}     129: {2,14}
    17: {7}       77: {4,5}     131: {32}
    19: {8}       83: {23}      155: {3,11}
    23: {9}       85: {3,7}     157: {37}
    31: {11}      87: {2,10}    161: {4,9}
    33: {2,5}     91: {4,6}     165: {2,3,5}
    35: {3,4}     93: {2,11}    169: {6,6}
    39: {2,6}     95: {3,8}     177: {2,17}
    41: {13}      97: {25}      179: {41}
    51: {2,7}    103: {27}      183: {2,18}
		

Crossrefs

For nonexistence we have A355529, count A370593.
For binary instead of prime indices we have A367908, counted by A367904.
For existence we have A368100, count A370592.
For a sequence instead of set of factors we have A368101.
The version for subsets is A370584, see also A370582, A370583.
Maximal sets of this type are counted by A370585.
Partitions of this type are counted by A370594.
For subsets and binary indices we have A370638.
The version for factorizations is A370645, see also A368414, A368413.
For divisors instead of factors we have A370810, counted by A370595.
A006530 gives greatest prime factor, least A020639.
A027746 lists prime factors, A112798 indices, length A001222.
A355741 counts ways to choose a prime factor of each prime index.

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n], {p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[100],Length[Union[Sort /@ Select[Tuples[prix/@prix[#]],UnsameQ@@#&]]]==1&]

A370591 Number of minimal subsets of {1..n} such that it is not possible to choose a different prime factor of each element (non-choosable).

Original entry on oeis.org

0, 1, 1, 1, 2, 2, 4, 4, 7, 11, 16, 16, 30, 30, 39, 73
Offset: 0

Views

Author

Gus Wiseman, Feb 28 2024

Keywords

Examples

			The a(1) = 1 through a(10) = 16 subsets:
{1}  {1}  {1}  {1}    {1}    {1}      {1}      {1}      {1}      {1}
               {2,4}  {2,4}  {2,4}    {2,4}    {2,4}    {2,4}    {2,4}
                             {2,3,6}  {2,3,6}  {2,8}    {2,8}    {2,8}
                             {3,4,6}  {3,4,6}  {4,8}    {3,9}    {3,9}
                                               {2,3,6}  {4,8}    {4,8}
                                               {3,4,6}  {2,3,6}  {2,3,6}
                                               {3,6,8}  {2,6,9}  {2,6,9}
                                                        {3,4,6}  {3,4,6}
                                                        {3,6,8}  {3,6,8}
                                                        {4,6,9}  {4,6,9}
                                                        {6,8,9}  {6,8,9}
                                                                 {2,5,10}
                                                                 {4,5,10}
                                                                 {5,8,10}
                                                                 {3,5,6,10}
                                                                 {5,6,9,10}
		

Crossrefs

Minimal case of A370583, complement A370582.
For binary indices instead of factors we have A370642, minima of A370637.
A006530 gives greatest prime factor, least A020639.
A027746 lists prime factors, indices A112798, length A001222.
A355741 counts choices of a prime factor of each prime index.
A367902 counts choosable set-systems, ranks A367906, unlabeled A368095.
A367903 counts non-choosable set-systems, ranks A367907, unlabeled A368094.
A368098 counts choosable unlabeled multiset partitions, complement A368097.
A368100 ranks choosable multisets, complement A355529.
A368414 counts choosable factorizations, complement A368413.
A370585 counts maximal choosable sets.
A370592 counts choosable partitions, complement A370593.

Programs

  • Mathematica
    Table[Length[fasmin[Select[Subsets[Range[n]], Length[Select[Tuples[prix/@#],UnsameQ@@#&]]==0&]]], {n,0,15}]

A387118 Number of integer partitions of n without choosable initial intervals.

Original entry on oeis.org

0, 0, 1, 1, 2, 4, 6, 8, 13, 19, 28, 37, 52, 70, 97, 130, 172, 224, 293, 378, 492, 630, 806, 1018, 1286, 1609, 2019, 2514, 3131, 3874, 4784, 5872, 7198, 8786, 10712, 13013, 15794, 19100, 23063, 27752, 33341, 39939, 47781, 57013, 67955, 80816, 95992, 113773, 134668
Offset: 0

Views

Author

Gus Wiseman, Sep 02 2025

Keywords

Comments

The initial interval of a nonnegative integer x is the set {1,...,x}.
We say that a sequence of nonempty sets is choosable iff it is possible to choose a different element from each set. For example, ({1,2},{1},{1,3}) is choosable because we have the choice (2,1,3), but ({1},{2},{1,3},{2,3}) is not.

Examples

			The partition y = (2,2,1) has initial intervals ({1,2},{1,2},{1}), which are not choosable, so y is counted under a(5).
The a(2) = 1 through a(8) = 13 partitions:
  (11)  (111)  (211)   (221)    (222)     (511)      (611)
               (1111)  (311)    (411)     (2221)     (2222)
                       (2111)   (2211)    (3211)     (3221)
                       (11111)  (3111)    (4111)     (3311)
                                (21111)   (22111)    (4211)
                                (111111)  (31111)    (5111)
                                          (211111)   (22211)
                                          (1111111)  (32111)
                                                     (41111)
                                                     (221111)
                                                     (311111)
                                                     (2111111)
                                                     (11111111)
		

Crossrefs

The complement is counted by A238873, ranks A387112.
The complement for divisors is A239312, ranks A368110.
For divisors instead of initial intervals we have A370320, ranks A355740.
The complement for prime factors is A370592, ranks A368100.
For prime factors instead of initial intervals we have A370593, ranks A355529.
These partitions have ranks A387113.
For partitions instead of initial intervals we have A387134.
The complement for partitions is A387328.
For strict partitions instead of initial intervals we have A387137, ranks A387176.
The complement for strict partitions is A387178.
A000005 counts divisors.
A000041 counts integer partitions, strict A000009.
A367902 counts choosable set-systems, complement A367903.
A370582 counts sets with choosable prime factors, complement A370583.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],Select[Tuples[Range/@#],UnsameQ@@#&]=={}&]],{n,0,10}]

Extensions

More terms from Jinyuan Wang, Sep 05 2025

A307984 a(n) is the number of Q-bases which can be built from the set {log(1),...,log(n)}.

Original entry on oeis.org

1, 1, 1, 2, 2, 5, 5, 7, 11, 25, 25, 38, 38, 84, 150, 178, 178, 235, 235, 341, 578, 1233, 1233, 1521, 1966, 4156, 4820, 6832, 6832, 8952, 8952, 9824, 15926, 33256, 47732, 54488, 54488, 113388, 181728, 218592, 218592, 279348, 279348, 388576, 467028, 966700, 966700
Offset: 1

Views

Author

Orges Leka, May 09 2019

Keywords

Comments

The real numbers log(p_1),...,log(p_r) where p_i is the i-th prime are known to be linearly independent over the rationals Q. Hence, for the numbers {log(1),...,log(n)}, where pi(n) = r, those numbers log(p_i) form a Q-basis of V_n:= = the Q-vector space generated by {log(1),...,log(n)}. This sequence a(n) counts the different Q-bases of V_n which can be build from the vectors of the set {log(1),...,log(n)}.
First differs from A370585 at A370585(21) = 579, a(21) = 578. The difference is due to the set {10,11,13,14,15,17,19,21}, which is not a basis because log(10) + log(21) = log(14) + log(15). - Gus Wiseman, Mar 13 2024

Examples

			[{}] -> For n = 1, we have 1 = a(1) bases; we count {} as a basis for V_0 = {0};
[{2}] -> for n = 2, we have 1 = a(2) basis, which is {2};
[{2, 3}] -> for n = 3, we have 1 = a(3) basis, which is {2,3};
[{2, 3}, {3, 4}] -> for n = 4 we have 2 = a(4) bases, which are {2,3},{3,4};
[{2, 3, 5}, {3, 4, 5}] -> a(5) = 2;
[{2, 3, 5}, {2, 5, 6}, {3, 4, 5}, {3, 5, 6}, {4, 5, 6}] -> a(6) = 5;
[{2, 3, 5, 7}, {2, 5, 6, 7}, {3, 4, 5, 7}, {3, 5, 6, 7}, {4, 5, 6, 7}] -> a(7) = 5.
		

Crossrefs

A370585 counts maximal factor-choosable subsets.

Programs

  • Sage
    MAXN=100
    def Log(a,N=MAXN):
        return vector([valuation(a,p) for p in primes(N)])
    def allBases(n,N=MAXN):
        M = matrix([Log(n,N=N) for n in range(1,n+1)],ring=QQ)
        r = M.rank()
        rr = Set(range(1,n+1))
        ll = []
        for S in rr.subsets(r):
            M = matrix([Log(k,N=N) for k in S])
            if M.rank()==r:
                ll.append(S)
        return ll
    [len(allBases(k)) for k in range(1,12)]

Formula

a(p) = a(p-1) for any prime number p. - Rémy Sigrist, May 09 2019

Extensions

a(12)-a(47) from Rémy Sigrist, May 09 2019

A387112 Numbers with (strictly) choosable initial intervals of prime indices.

Original entry on oeis.org

1, 2, 3, 5, 6, 7, 9, 10, 11, 13, 14, 15, 17, 19, 21, 22, 23, 25, 26, 29, 30, 31, 33, 34, 35, 37, 38, 39, 41, 42, 43, 45, 46, 47, 49, 50, 51, 53, 55, 57, 58, 59, 61, 62, 63, 65, 66, 67, 69, 70, 71, 73, 74, 75, 77, 78, 79, 82, 83, 85, 86, 87, 89, 91, 93, 94, 95
Offset: 1

Views

Author

Gus Wiseman, Aug 23 2025

Keywords

Comments

First differs from A371088 in having a(86) = 121.
The initial interval of a nonnegative integer x is the set {1,...,x}.
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
We say that a set or sequence of nonempty sets is choosable iff it is possible to choose a different element from each set. For example, ({1,2},{1},{1,3}) is choosable because we have the choice (2,1,3), but ({1,2,3},{1},{1,3},{2}) is not.
This sequence lists all numbers k such that if the prime indices of k are (x1,x2,...,xz), then the sequence of sets (initial intervals) ({1,...,x1},{1,...,x2},...,{1,...,xz}) is choosable.

Examples

			The prime indices of 85 are {3,7}, with initial intervals {{1,2,3},{1,2,3,4,5,6,7}}, which are choosable, so 85 is in the sequence
The prime indices of 90 are {1,2,2,3}, with initial intervals {{1},{1,2},{1,2},{1,2,3}}, which are not choosable, so 90 is not in the sequence.
		

Crossrefs

Partitions of this type are counted by A238873, complement A387118.
For partitions instead of initial intervals we have A276078, complement A276079.
For prime factors instead of initial intervals we have A368100, complement A355529.
For divisors instead of initial intervals we have A368110, complement A355740.
These are all the positions of nonzero terms in A387111, complement A387134.
The complement is A387113.
For strict partitions instead of initial intervals we have A387176, complement A387137.
A061395 gives greatest prime index, least A055396.
A112798 lists prime indices, row sums A056239 or A066328, lengths A001222.
A120383 lists numbers divisible by all of their prime indices.
A367902 counts choosable set-systems, complement A367903.
A370582 counts sets with choosable prime factors, complement A370583.
A370585 counts maximal subsets with choosable prime factors.

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[100],Select[Tuples[Range/@prix[#]],UnsameQ@@#&]!={}&]

A387113 Numbers whose prime indices do not have (strictly) choosable initial intervals.

Original entry on oeis.org

4, 8, 12, 16, 18, 20, 24, 27, 28, 32, 36, 40, 44, 48, 52, 54, 56, 60, 64, 68, 72, 76, 80, 81, 84, 88, 90, 92, 96, 100, 104, 108, 112, 116, 120, 124, 126, 128, 132, 135, 136, 140, 144, 148, 150, 152, 156, 160, 162, 164, 168, 172, 176, 180, 184, 188, 189, 192
Offset: 1

Views

Author

Gus Wiseman, Aug 24 2025

Keywords

Comments

The initial interval of a nonnegative integer x is the set {1,...,x}.
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
We say that a set or sequence of nonempty sets is choosable iff it is possible to choose a different element from each set. For example, ({1,2},{1},{1,3}) is choosable because we have the choice (2,1,3), but ({1,2,3},{1},{1,3},{2}) is not.
This sequence lists all numbers k such that if the prime indices of k are (x1,x2,...,xz), then the sequence of sets (initial intervals) ({1,...,x1},{1,...,x2},...,{1,...,xz}) is not choosable.

Examples

			The prime indices of 18 are {1,2,2}, with initial intervals ({1},{1,2},{1,2}), which have choices (1,1,1), (1,1,2), (1,2,1), (1,2,2), and since none of these are strict, 18 is in the sequence.
The prime indices of 85 are {3,7}, with initial intervals {{1,2,3},{1,2,3,4,5,6,7}}, which are choosable, so 85 is in not the sequence.
The prime indices of 90 are {1,2,2,3}, with initial intervals {{1},{1,2},{1,2},{1,2,3}}, which are not choosable, so 90 is in the sequence.
The terms together with their prime indices begin:
    4: {1,1}
    8: {1,1,1}
   12: {1,1,2}
   16: {1,1,1,1}
   18: {1,2,2}
   20: {1,1,3}
   24: {1,1,1,2}
   27: {2,2,2}
   28: {1,1,4}
   32: {1,1,1,1,1}
   36: {1,1,2,2}
   40: {1,1,1,3}
   44: {1,1,5}
   48: {1,1,1,1,2}
   52: {1,1,6}
   54: {1,2,2,2}
   56: {1,1,1,4}
   60: {1,1,2,3}
   64: {1,1,1,1,1,1}
		

Crossrefs

For partitions instead of initial intervals we have A276079, complement A276078.
For prime factors instead of initial intervals we have A355529, complement A368100.
For divisors instead of initial intervals we have A355740, complement A368110.
These are the positions of 0 in A387111, complement A387134.
The complement is A387112.
Partitions of this type are counted by A387118, complement A238873.
For strict partitions instead of initial intervals we have A387137, complement A387176.
A061395 gives greatest prime index, least A055396.
A112798 lists prime indices, row sums A056239 or A066328, lengths A001222.
A120383 lists numbers divisible by all of their prime indices.
A367902 counts choosable set-systems, complement A367903.
A370582 counts sets with choosable prime factors, complement A370583.
A370585 counts maximal subsets with choosable prime factors.

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[100],Select[Tuples[Range/@prix[#]],UnsameQ@@#&]=={}&]
Previous Showing 11-20 of 24 results. Next