cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 26 results. Next

A370645 Number of integer factorizations of n into unordered factors > 1 such that only one set can be obtained by choosing a different prime factor of each factor.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 3, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 4, 1, 1, 1, 3, 1, 1, 1, 2, 2, 1, 1, 4, 1, 2, 1, 2, 1, 3, 1, 3, 1, 1, 1, 3, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 5, 1, 1, 2, 2, 1, 1, 1, 4, 1, 1, 1, 3, 1, 1, 1
Offset: 1

Views

Author

Gus Wiseman, Mar 01 2024

Keywords

Comments

All of these factorizations are co-balanced (A340596).

Examples

			The factorization f = (3*6*10) has prime factor choices (3,2,2), (3,3,2), (3,2,5), and (3,3,5), of which only (3,2,5) has all different parts, so f is counted under a(180).
The a(n) factorizations for n = 2, 12, 24, 36, 72, 120, 144, 180, 288:
  (2)  (2*6)  (3*8)   (4*9)   (8*9)   (3*5*8)   (2*72)   (4*5*9)   (3*96)
       (3*4)  (4*6)   (6*6)   (2*36)  (4*5*6)   (3*48)   (5*6*6)   (4*72)
              (2*12)  (2*18)  (3*24)  (2*3*20)  (4*36)   (2*3*30)  (6*48)
                      (3*12)  (4*18)  (2*5*12)  (6*24)   (2*5*18)  (8*36)
                              (6*12)  (2*6*10)  (8*18)   (2*6*15)  (9*32)
                                      (3*4*10)  (9*16)   (2*9*10)  (12*24)
                                                (12*12)  (3*4*15)  (16*18)
                                                         (3*5*12)  (2*144)
                                                         (3*6*10)
		

Crossrefs

Multisets of this type are ranked by A368101, see also A368100, A355529.
For nonexistence we have A368413, complement A368414.
Subsets of this type are counted by A370584, see also A370582, A370583.
Maximal sets of this type are counted by A370585.
The version for partitions is A370594, see also A370592, A370593.
Subsets of this type are counted by A370638, see also A370636, A370637.
For unlabeled multiset partitions we have A370646, also A368098, A368097.
A001055 counts factorizations, strict A045778.
A006530 gives greatest prime factor, least A020639.
A007716 counts non-isomorphic multiset partitions, connected A007718.
A027746 lists prime factors, A112798 indices, length A001222.
A058891 counts set-systems, unlabeled A000612, connected A323818.
A283877 counts non-isomorphic set-systems, connected A300913.
A355741 counts ways to choose a prime factor of each prime index.
For set-systems see A367902-A367908.

Programs

  • Mathematica
    facs[n_]:=If[n<=1,{{}},Join @@ Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]], {d,Rest[Divisors[n]]}]];
    Table[Length[Select[facs[n], Length[Union[Sort/@Select[Tuples[First /@ FactorInteger[#]&/@#], UnsameQ@@#&]]]==1&]],{n,100}]

A370647 Numbers such that only one set can be obtained by choosing a different prime factor of each prime index.

Original entry on oeis.org

1, 3, 5, 7, 11, 15, 17, 19, 23, 31, 33, 35, 39, 41, 51, 53, 55, 59, 65, 67, 69, 77, 83, 85, 87, 91, 93, 95, 97, 103, 109, 111, 119, 123, 127, 129, 131, 155, 157, 161, 165, 169, 177, 179, 183, 185, 187, 191, 201, 203, 205, 209, 211, 213, 217, 227, 235, 237, 241
Offset: 1

Views

Author

Gus Wiseman, Mar 06 2024

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The prime indices of 91 are {4,6}, with only choice {2,3}, so 91 is in the sequence.
The terms together with their prime indices begin:
     1: {}        53: {16}      109: {29}
     3: {2}       55: {3,5}     111: {2,12}
     5: {3}       59: {17}      119: {4,7}
     7: {4}       65: {3,6}     123: {2,13}
    11: {5}       67: {19}      127: {31}
    15: {2,3}     69: {2,9}     129: {2,14}
    17: {7}       77: {4,5}     131: {32}
    19: {8}       83: {23}      155: {3,11}
    23: {9}       85: {3,7}     157: {37}
    31: {11}      87: {2,10}    161: {4,9}
    33: {2,5}     91: {4,6}     165: {2,3,5}
    35: {3,4}     93: {2,11}    169: {6,6}
    39: {2,6}     95: {3,8}     177: {2,17}
    41: {13}      97: {25}      179: {41}
    51: {2,7}    103: {27}      183: {2,18}
		

Crossrefs

For nonexistence we have A355529, count A370593.
For binary instead of prime indices we have A367908, counted by A367904.
For existence we have A368100, count A370592.
For a sequence instead of set of factors we have A368101.
The version for subsets is A370584, see also A370582, A370583.
Maximal sets of this type are counted by A370585.
Partitions of this type are counted by A370594.
For subsets and binary indices we have A370638.
The version for factorizations is A370645, see also A368414, A368413.
For divisors instead of factors we have A370810, counted by A370595.
A006530 gives greatest prime factor, least A020639.
A027746 lists prime factors, A112798 indices, length A001222.
A355741 counts ways to choose a prime factor of each prime index.

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n], {p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[100],Length[Union[Sort /@ Select[Tuples[prix/@prix[#]],UnsameQ@@#&]]]==1&]

A370641 Number of maximal subsets of {1..n} containing n such that it is possible to choose a different binary index of each element.

Original entry on oeis.org

0, 1, 1, 2, 3, 5, 9, 15, 32, 45, 67, 98, 141, 197, 263, 358, 1201, 1493, 1920, 2482, 3123, 3967, 4884, 6137, 7584, 9369, 11169, 13664, 15818, 19152, 22418, 26905, 151286, 173409, 202171, 237572, 273651, 320040, 367792, 428747, 485697, 562620, 637043, 734738, 815492
Offset: 0

Views

Author

Gus Wiseman, Mar 11 2024

Keywords

Comments

A binary index of n is any position of a 1 in its reversed binary expansion. The binary indices of n are row n of A048793.
Also choices of A070939(n) elements of {1..n} containing n such that it is possible to choose a different binary index of each.

Examples

			The a(0) = 0 through a(7) = 15 subsets:
  .  {1}  {1,2}  {1,3}  {1,2,4}  {1,2,5}  {1,2,6}  {1,2,7}
                 {2,3}  {1,3,4}  {1,3,5}  {1,3,6}  {1,3,7}
                        {2,3,4}  {2,3,5}  {1,4,6}  {1,4,7}
                                 {2,4,5}  {1,5,6}  {1,5,7}
                                 {3,4,5}  {2,3,6}  {1,6,7}
                                          {2,5,6}  {2,3,7}
                                          {3,4,6}  {2,4,7}
                                          {3,5,6}  {2,5,7}
                                          {4,5,6}  {2,6,7}
                                                   {3,4,7}
                                                   {3,5,7}
                                                   {3,6,7}
                                                   {4,5,7}
                                                   {4,6,7}
                                                   {5,6,7}
		

Crossrefs

A version for set-systems is A368601.
For prime indices we have A370590, without n A370585, see also A370591.
This is the maximal case of A370636 requiring n, complement A370637.
This is the maximal case of A370639, complement A370589.
Without requiring n we have A370640.
Dominated by A370819.
A048793 lists binary indices, A000120 length, A272020 reverse, A029931 sum.
A058891 counts set-systems, A003465 covering, A323818 connected.
A070939 gives length of binary expansion.
A096111 gives product of binary indices.
A367902 counts choosable set-systems, ranks A367906, unlabeled A368095.
A367903 counts non-choosable set-systems, ranks A367907, unlabeled A368094.

Programs

  • Mathematica
    bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
    Table[Length[Select[Subsets[Range[n],{IntegerLength[n,2]}],MemberQ[#,n] && Length[Union[Sort/@Select[Tuples[bpe/@#], UnsameQ@@#&]]]>0&]],{n,0,25}]

Extensions

More terms from Jinyuan Wang, Mar 28 2025

A370591 Number of minimal subsets of {1..n} such that it is not possible to choose a different prime factor of each element (non-choosable).

Original entry on oeis.org

0, 1, 1, 1, 2, 2, 4, 4, 7, 11, 16, 16, 30, 30, 39, 73
Offset: 0

Views

Author

Gus Wiseman, Feb 28 2024

Keywords

Examples

			The a(1) = 1 through a(10) = 16 subsets:
{1}  {1}  {1}  {1}    {1}    {1}      {1}      {1}      {1}      {1}
               {2,4}  {2,4}  {2,4}    {2,4}    {2,4}    {2,4}    {2,4}
                             {2,3,6}  {2,3,6}  {2,8}    {2,8}    {2,8}
                             {3,4,6}  {3,4,6}  {4,8}    {3,9}    {3,9}
                                               {2,3,6}  {4,8}    {4,8}
                                               {3,4,6}  {2,3,6}  {2,3,6}
                                               {3,6,8}  {2,6,9}  {2,6,9}
                                                        {3,4,6}  {3,4,6}
                                                        {3,6,8}  {3,6,8}
                                                        {4,6,9}  {4,6,9}
                                                        {6,8,9}  {6,8,9}
                                                                 {2,5,10}
                                                                 {4,5,10}
                                                                 {5,8,10}
                                                                 {3,5,6,10}
                                                                 {5,6,9,10}
		

Crossrefs

Minimal case of A370583, complement A370582.
For binary indices instead of factors we have A370642, minima of A370637.
A006530 gives greatest prime factor, least A020639.
A027746 lists prime factors, indices A112798, length A001222.
A355741 counts choices of a prime factor of each prime index.
A367902 counts choosable set-systems, ranks A367906, unlabeled A368095.
A367903 counts non-choosable set-systems, ranks A367907, unlabeled A368094.
A368098 counts choosable unlabeled multiset partitions, complement A368097.
A368100 ranks choosable multisets, complement A355529.
A368414 counts choosable factorizations, complement A368413.
A370585 counts maximal choosable sets.
A370592 counts choosable partitions, complement A370593.

Programs

  • Mathematica
    Table[Length[fasmin[Select[Subsets[Range[n]], Length[Select[Tuples[prix/@#],UnsameQ@@#&]]==0&]]], {n,0,15}]

A370809 Greatest number of multisets that can be obtained by choosing a prime factor of each part of an integer partition of n.

Original entry on oeis.org

1, 0, 1, 1, 1, 1, 2, 1, 2, 2, 2, 2, 3, 2, 3, 3, 4, 3, 4, 4, 4, 4, 6, 4, 6, 6, 6, 6, 8, 6, 8, 8, 9, 8, 10, 9, 12, 10, 12, 12, 12, 12, 16, 13, 16, 16, 18, 16, 20, 18, 20, 20, 24, 20, 24, 24, 24, 26, 30, 26, 30, 30, 32, 32, 36, 32, 36, 36, 40, 38, 42, 40, 45, 44, 48
Offset: 0

Views

Author

Gus Wiseman, Mar 05 2024

Keywords

Examples

			For the partition (10,6,3,2) there are 4 choices: {2,2,2,3}, {2,2,3,3}, {2,2,3,5}, {2,3,3,5} so a(21) >= 4.
For the partitions of 6 we have the following choices:
  (6): {{2},{3}}
  (51): {}
  (42): {{2,2}}
  (411): {}
  (33): {{3,3}}
  (321): {}
  (3111): {}
  (222): {{2,2,2}}
  (2211): {}
  (21111): {}
  (111111): {}
So a(6) = 2.
		

Crossrefs

For just all divisors (not just prime factors) we have A370808.
The version for factorizations is A370817, for all divisors A370816.
A000041 counts integer partitions, strict A000009.
A006530 gives greatest prime factor, least A020639.
A027746 lists prime factors, A112798 indices, length A001222.
A355741, A355744, A355745 choose prime factors of prime indices.
A368413 counts non-choosable factorizations, complement A368414.
A370320 counts non-condensed partitions, ranks A355740.
A370592, A370593, A370594, `A370807 count non-choosable partitions.

Programs

  • Mathematica
    Table[Max[Length[Union[Sort /@ Tuples[If[#==1,{},First/@FactorInteger[#]]& /@ #]]]&/@IntegerPartitions[n]],{n,0,30}]

Extensions

Terms a(31) onward from Max Alekseyev, Sep 17 2024

A370644 Number of minimal subsets of {2..n} such that it is not possible to choose a different binary index of each element.

Original entry on oeis.org

0, 0, 0, 0, 0, 1, 4, 13, 13, 26, 56, 126, 243, 471, 812, 1438
Offset: 0

Views

Author

Gus Wiseman, Mar 11 2024

Keywords

Comments

A binary index of n is any position of a 1 in its reversed binary expansion. The binary indices of n are row n of A048793.

Examples

			The a(0) = 0 through a(7) = 13 subsets:
  .  .  .  .  .  {2,3,4,5}  {2,4,6}    {2,4,6}
                            {2,3,4,5}  {2,3,4,5}
                            {2,3,5,6}  {2,3,4,7}
                            {3,4,5,6}  {2,3,5,6}
                                       {2,3,5,7}
                                       {2,3,6,7}
                                       {2,4,5,7}
                                       {2,5,6,7}
                                       {3,4,5,6}
                                       {3,4,5,7}
                                       {3,4,6,7}
                                       {3,5,6,7}
                                       {4,5,6,7}
The a(0) = 0 through a(7) = 13 set-systems:
  .  .  .  .  .  {2}{12}{3}{13}  {2}{3}{23}       {2}{3}{23}
                                 {2}{12}{3}{13}   {2}{12}{3}{13}
                                 {12}{3}{13}{23}  {12}{3}{13}{23}
                                 {2}{12}{13}{23}  {2}{12}{13}{23}
                                                  {2}{12}{3}{123}
                                                  {2}{3}{13}{123}
                                                  {12}{3}{13}{123}
                                                  {12}{3}{23}{123}
                                                  {2}{12}{13}{123}
                                                  {2}{12}{23}{123}
                                                  {2}{13}{23}{123}
                                                  {3}{13}{23}{123}
                                                  {12}{13}{23}{123}
		

Crossrefs

The version with ones allowed is A370642, minimal case of A370637.
This is the minimal case of A370643.
A048793 lists binary indices, A000120 length, A272020 reverse, A029931 sum.
A070939 gives length of binary expansion.
A096111 gives product of binary indices.
A367902 counts choosable set-systems, ranks A367906, unlabeled A368095.
A367903 counts non-choosable set-systems, ranks A367907, unlabeled A368094.
A370585 counts maximal choosable sets.

Programs

  • Mathematica
    bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
    fasmin[y_]:=Complement[y,Union@@Table[Union[s,#]& /@ Rest[Subsets[Complement[Union@@y,s]]],{s,y}]];
    Table[Length[fasmin[Select[Subsets[Range[2,n]], Select[Tuples[bpe/@#],UnsameQ@@#&]=={}&]]],{n,0,10}]

A387118 Number of integer partitions of n without choosable initial intervals.

Original entry on oeis.org

0, 0, 1, 1, 2, 4, 6, 8, 13, 19, 28, 37, 52, 70, 97, 130, 172, 224, 293, 378, 492, 630, 806, 1018, 1286, 1609, 2019, 2514, 3131, 3874, 4784, 5872, 7198, 8786, 10712, 13013, 15794, 19100, 23063, 27752, 33341, 39939, 47781, 57013, 67955, 80816, 95992, 113773, 134668
Offset: 0

Views

Author

Gus Wiseman, Sep 02 2025

Keywords

Comments

The initial interval of a nonnegative integer x is the set {1,...,x}.
We say that a sequence of nonempty sets is choosable iff it is possible to choose a different element from each set. For example, ({1,2},{1},{1,3}) is choosable because we have the choice (2,1,3), but ({1},{2},{1,3},{2,3}) is not.

Examples

			The partition y = (2,2,1) has initial intervals ({1,2},{1,2},{1}), which are not choosable, so y is counted under a(5).
The a(2) = 1 through a(8) = 13 partitions:
  (11)  (111)  (211)   (221)    (222)     (511)      (611)
               (1111)  (311)    (411)     (2221)     (2222)
                       (2111)   (2211)    (3211)     (3221)
                       (11111)  (3111)    (4111)     (3311)
                                (21111)   (22111)    (4211)
                                (111111)  (31111)    (5111)
                                          (211111)   (22211)
                                          (1111111)  (32111)
                                                     (41111)
                                                     (221111)
                                                     (311111)
                                                     (2111111)
                                                     (11111111)
		

Crossrefs

The complement is counted by A238873, ranks A387112.
The complement for divisors is A239312, ranks A368110.
For divisors instead of initial intervals we have A370320, ranks A355740.
The complement for prime factors is A370592, ranks A368100.
For prime factors instead of initial intervals we have A370593, ranks A355529.
These partitions have ranks A387113.
For partitions instead of initial intervals we have A387134.
The complement for partitions is A387328.
For strict partitions instead of initial intervals we have A387137, ranks A387176.
The complement for strict partitions is A387178.
A000005 counts divisors.
A000041 counts integer partitions, strict A000009.
A367902 counts choosable set-systems, complement A367903.
A370582 counts sets with choosable prime factors, complement A370583.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],Select[Tuples[Range/@#],UnsameQ@@#&]=={}&]],{n,0,10}]

Extensions

More terms from Jinyuan Wang, Sep 05 2025

A307984 a(n) is the number of Q-bases which can be built from the set {log(1),...,log(n)}.

Original entry on oeis.org

1, 1, 1, 2, 2, 5, 5, 7, 11, 25, 25, 38, 38, 84, 150, 178, 178, 235, 235, 341, 578, 1233, 1233, 1521, 1966, 4156, 4820, 6832, 6832, 8952, 8952, 9824, 15926, 33256, 47732, 54488, 54488, 113388, 181728, 218592, 218592, 279348, 279348, 388576, 467028, 966700, 966700
Offset: 1

Views

Author

Orges Leka, May 09 2019

Keywords

Comments

The real numbers log(p_1),...,log(p_r) where p_i is the i-th prime are known to be linearly independent over the rationals Q. Hence, for the numbers {log(1),...,log(n)}, where pi(n) = r, those numbers log(p_i) form a Q-basis of V_n:= = the Q-vector space generated by {log(1),...,log(n)}. This sequence a(n) counts the different Q-bases of V_n which can be build from the vectors of the set {log(1),...,log(n)}.
First differs from A370585 at A370585(21) = 579, a(21) = 578. The difference is due to the set {10,11,13,14,15,17,19,21}, which is not a basis because log(10) + log(21) = log(14) + log(15). - Gus Wiseman, Mar 13 2024

Examples

			[{}] -> For n = 1, we have 1 = a(1) bases; we count {} as a basis for V_0 = {0};
[{2}] -> for n = 2, we have 1 = a(2) basis, which is {2};
[{2, 3}] -> for n = 3, we have 1 = a(3) basis, which is {2,3};
[{2, 3}, {3, 4}] -> for n = 4 we have 2 = a(4) bases, which are {2,3},{3,4};
[{2, 3, 5}, {3, 4, 5}] -> a(5) = 2;
[{2, 3, 5}, {2, 5, 6}, {3, 4, 5}, {3, 5, 6}, {4, 5, 6}] -> a(6) = 5;
[{2, 3, 5, 7}, {2, 5, 6, 7}, {3, 4, 5, 7}, {3, 5, 6, 7}, {4, 5, 6, 7}] -> a(7) = 5.
		

Crossrefs

A370585 counts maximal factor-choosable subsets.

Programs

  • Sage
    MAXN=100
    def Log(a,N=MAXN):
        return vector([valuation(a,p) for p in primes(N)])
    def allBases(n,N=MAXN):
        M = matrix([Log(n,N=N) for n in range(1,n+1)],ring=QQ)
        r = M.rank()
        rr = Set(range(1,n+1))
        ll = []
        for S in rr.subsets(r):
            M = matrix([Log(k,N=N) for k in S])
            if M.rank()==r:
                ll.append(S)
        return ll
    [len(allBases(k)) for k in range(1,12)]

Formula

a(p) = a(p-1) for any prime number p. - Rémy Sigrist, May 09 2019

Extensions

a(12)-a(47) from Rémy Sigrist, May 09 2019

A370807 Number of integer partitions of n into parts > 1 such that it is not possible to choose a different prime factor of each part.

Original entry on oeis.org

0, 0, 0, 0, 1, 0, 3, 1, 4, 4, 8, 9, 15, 17, 25, 30, 43, 54, 72, 87, 115, 139, 181, 224, 283, 342, 429, 519, 647, 779, 967
Offset: 0

Views

Author

Gus Wiseman, Mar 04 2024

Keywords

Examples

			The a(0) = 0 through a(11) = 9 partitions:
  .  .  .  .  (22)  .  (33)   (322)  (44)    (333)   (55)     (443)
                       (42)          (332)   (432)   (82)     (533)
                       (222)         (422)   (522)   (433)    (542)
                                     (2222)  (3222)  (442)    (632)
                                                     (622)    (722)
                                                     (3322)   (3332)
                                                     (4222)   (4322)
                                                     (22222)  (5222)
                                                              (32222)
		

Crossrefs

These partitions are ranked by the odd terms of A355529, complement A368100.
The version for set-systems is A367903, complement A367902.
The version for factorizations is A368413, complement A368414.
With ones allowed we have A370593, complement A370592.
For a unique choice we have A370594, ranks A370647.
The version for divisors instead of factors is A370804, complement A370805.
A006530 gives greatest prime factor, least A020639.
A027746 lists prime factors, A112798 indices, length A001222.
A239312 counts condensed partitions, ranks A368110.
A355741 counts choices of a prime factor of each prime index.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],FreeQ[#,1] && Length[Select[Tuples[If[#==1,{},First/@FactorInteger[#]]&/@#],UnsameQ@@#&]]==0&]],{n,0,30}]

A387112 Numbers with (strictly) choosable initial intervals of prime indices.

Original entry on oeis.org

1, 2, 3, 5, 6, 7, 9, 10, 11, 13, 14, 15, 17, 19, 21, 22, 23, 25, 26, 29, 30, 31, 33, 34, 35, 37, 38, 39, 41, 42, 43, 45, 46, 47, 49, 50, 51, 53, 55, 57, 58, 59, 61, 62, 63, 65, 66, 67, 69, 70, 71, 73, 74, 75, 77, 78, 79, 82, 83, 85, 86, 87, 89, 91, 93, 94, 95
Offset: 1

Views

Author

Gus Wiseman, Aug 23 2025

Keywords

Comments

First differs from A371088 in having a(86) = 121.
The initial interval of a nonnegative integer x is the set {1,...,x}.
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
We say that a set or sequence of nonempty sets is choosable iff it is possible to choose a different element from each set. For example, ({1,2},{1},{1,3}) is choosable because we have the choice (2,1,3), but ({1,2,3},{1},{1,3},{2}) is not.
This sequence lists all numbers k such that if the prime indices of k are (x1,x2,...,xz), then the sequence of sets (initial intervals) ({1,...,x1},{1,...,x2},...,{1,...,xz}) is choosable.

Examples

			The prime indices of 85 are {3,7}, with initial intervals {{1,2,3},{1,2,3,4,5,6,7}}, which are choosable, so 85 is in the sequence
The prime indices of 90 are {1,2,2,3}, with initial intervals {{1},{1,2},{1,2},{1,2,3}}, which are not choosable, so 90 is not in the sequence.
		

Crossrefs

Partitions of this type are counted by A238873, complement A387118.
For partitions instead of initial intervals we have A276078, complement A276079.
For prime factors instead of initial intervals we have A368100, complement A355529.
For divisors instead of initial intervals we have A368110, complement A355740.
These are all the positions of nonzero terms in A387111, complement A387134.
The complement is A387113.
For strict partitions instead of initial intervals we have A387176, complement A387137.
A061395 gives greatest prime index, least A055396.
A112798 lists prime indices, row sums A056239 or A066328, lengths A001222.
A120383 lists numbers divisible by all of their prime indices.
A367902 counts choosable set-systems, complement A367903.
A370582 counts sets with choosable prime factors, complement A370583.
A370585 counts maximal subsets with choosable prime factors.

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[100],Select[Tuples[Range/@prix[#]],UnsameQ@@#&]!={}&]
Previous Showing 11-20 of 26 results. Next