cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-17 of 17 results.

A370639 Number of subsets of {1..n} containing n such that it is possible to choose a different binary index of each element.

Original entry on oeis.org

0, 1, 2, 3, 7, 10, 15, 22, 61, 81, 112, 154, 207, 276, 355, 464, 1771, 2166, 2724, 3445, 4246, 5292, 6420, 7922, 9586, 11667, 13768, 16606, 19095, 22825, 26498, 31421, 187223, 213684, 247670, 289181, 331301, 385079, 440411, 510124, 575266, 662625, 747521
Offset: 0

Views

Author

Gus Wiseman, Mar 08 2024

Keywords

Comments

A binary index of n is any position of a 1 in its reversed binary expansion. The binary indices of n are row n of A048793.

Examples

			The a(0) = 0 through a(6) = 15 subsets:
  .  {1}  {2}    {3}    {4}      {5}      {6}
          {1,2}  {1,3}  {1,4}    {1,5}    {1,6}
                 {2,3}  {2,4}    {2,5}    {2,6}
                        {3,4}    {3,5}    {3,6}
                        {1,2,4}  {4,5}    {4,6}
                        {1,3,4}  {1,2,5}  {5,6}
                        {2,3,4}  {1,3,5}  {1,2,6}
                                 {2,3,5}  {1,3,6}
                                 {2,4,5}  {1,4,6}
                                 {3,4,5}  {1,5,6}
                                          {2,3,6}
                                          {2,5,6}
                                          {3,4,6}
                                          {3,5,6}
                                          {4,5,6}
		

Crossrefs

Simple graphs of this type are counted by A133686, covering A367869.
Unlabeled graphs of this type are counted by A134964, complement A140637.
Simple graphs not of this type are counted by A367867, covering A367868.
Set systems of this type are counted by A367902, ranks A367906.
Set systems not of this type are counted by A367903, ranks A367907.
Set systems uniquely of this type are counted by A367904, ranks A367908.
Unlabeled multiset partitions of this type are A368098, complement A368097.
A version for MM-numbers of multisets is A368100, complement A355529.
Factorizations of this type are A368414/A370814, complement A368413/A370813.
For prime instead of binary indices we have A370586, differences of A370582.
The complement for prime indices is A370587, differences of A370583.
The complement is counted by A370589, differences of A370637.
Partial sums are A370636.
The complement has partial sums A370637/A370643, minima A370642/A370644.
The case of a unique choice is A370641, differences of A370638.
A048793 lists binary indices, A000120 length, A272020 reverse, A029931 sum.
A058891 counts set-systems, A003465 covering, A323818 connected.
A070939 gives length of binary expansion.
A096111 gives product of binary indices.
A326031 gives weight of the set-system with BII-number n.

Programs

  • Mathematica
    bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
    Table[Length[Select[Subsets[Range[n]],MemberQ[#,n] && Select[Tuples[bpe/@#],UnsameQ@@#&]!={}&]],{n,0,10}]

Formula

First differences of A370636.

Extensions

a(19)-a(42) from Alois P. Heinz, Mar 09 2024

A370589 Number of subsets of {1..n} containing n such that it is not possible to choose a different binary index of each element.

Original entry on oeis.org

0, 0, 0, 1, 1, 6, 17, 42, 67, 175, 400, 870, 1841, 3820, 7837, 15920, 30997, 63370, 128348, 258699, 520042, 1043284, 2090732, 4186382, 8379022, 16765549, 33540664, 67092258, 134198633, 268412631, 536844414, 1073710403, 2147296425, 4294753612, 8589686922, 17179580003
Offset: 0

Views

Author

Gus Wiseman, Mar 08 2024

Keywords

Comments

A binary index of n is any position of a 1 in its reversed binary expansion. The binary indices of n are row n of A048793.

Examples

			The binary indices of {1,4,5} are {{1},{3},{1,3}}, from which it is not possible to choose three different elements, so S is counted under a(3).
The binary indices of S = {1,6,8,9} are {{1},{2,3},{4},{1,4}}, from which it is not possible to choose four different elements, so S is counted under a(9).
The a(0) = 0 through a(6) = 17 subsets:
  .  .  .  {1,2,3}  {1,2,3,4}  {1,4,5}      {2,4,6}
                               {1,2,3,5}    {1,2,3,6}
                               {1,2,4,5}    {1,2,4,6}
                               {1,3,4,5}    {1,2,5,6}
                               {2,3,4,5}    {1,3,4,6}
                               {1,2,3,4,5}  {1,3,5,6}
                                            {1,4,5,6}
                                            {2,3,4,6}
                                            {2,3,5,6}
                                            {2,4,5,6}
                                            {3,4,5,6}
                                            {1,2,3,4,6}
                                            {1,2,3,5,6}
                                            {1,2,4,5,6}
                                            {1,3,4,5,6}
                                            {2,3,4,5,6}
                                            {1,2,3,4,5,6}
		

Crossrefs

Simple graphs not of this type are counted by A133686, covering A367869.
Unlabeled graphs of this type are counted by A140637, complement A134964.
Simple graphs of this type are counted by A367867, covering A367868.
Set systems not of this type are counted by A367902, ranks A367906.
Set systems of this type are counted by A367903, ranks A367907.
Set systems uniquely not of this type are counted by A367904, ranks A367908.
Unlabeled multiset partitions of this type are A368097, complement A368098.
A version for MM-numbers of multisets is A355529, complement A368100.
Factorizations are counted by A368413/A370813, complement A368414/A370814.
The complement for prime indices is A370586, differences of A370582.
For prime indices we have A370587, differences of A370583.
Partial sums are A370637/A370643, minima A370642/A370644.
The complement is counted by A370639, partial sums A370636.
The version for a unique choice is A370641, partial sums A370638.
A048793 lists binary indices, A000120 length, A272020 reverse, A029931 sum.
A058891 counts set-systems, A003465 covering, A323818 connected.
A070939 gives length of binary expansion.
A096111 gives product of binary indices.
A326031 gives weight of the set-system with BII-number n.

Programs

  • Mathematica
    bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
    Table[Length[Select[Subsets[Range[n]],MemberQ[#,n] && Select[Tuples[bpe/@#],UnsameQ@@#&]=={}&]],{n,0,10}]

Extensions

a(19)-a(35) from Alois P. Heinz, Mar 09 2024

A370641 Number of maximal subsets of {1..n} containing n such that it is possible to choose a different binary index of each element.

Original entry on oeis.org

0, 1, 1, 2, 3, 5, 9, 15, 32, 45, 67, 98, 141, 197, 263, 358, 1201, 1493, 1920, 2482, 3123, 3967, 4884, 6137, 7584, 9369, 11169, 13664, 15818, 19152, 22418, 26905, 151286, 173409, 202171, 237572, 273651, 320040, 367792, 428747, 485697, 562620, 637043, 734738, 815492
Offset: 0

Views

Author

Gus Wiseman, Mar 11 2024

Keywords

Comments

A binary index of n is any position of a 1 in its reversed binary expansion. The binary indices of n are row n of A048793.
Also choices of A070939(n) elements of {1..n} containing n such that it is possible to choose a different binary index of each.

Examples

			The a(0) = 0 through a(7) = 15 subsets:
  .  {1}  {1,2}  {1,3}  {1,2,4}  {1,2,5}  {1,2,6}  {1,2,7}
                 {2,3}  {1,3,4}  {1,3,5}  {1,3,6}  {1,3,7}
                        {2,3,4}  {2,3,5}  {1,4,6}  {1,4,7}
                                 {2,4,5}  {1,5,6}  {1,5,7}
                                 {3,4,5}  {2,3,6}  {1,6,7}
                                          {2,5,6}  {2,3,7}
                                          {3,4,6}  {2,4,7}
                                          {3,5,6}  {2,5,7}
                                          {4,5,6}  {2,6,7}
                                                   {3,4,7}
                                                   {3,5,7}
                                                   {3,6,7}
                                                   {4,5,7}
                                                   {4,6,7}
                                                   {5,6,7}
		

Crossrefs

A version for set-systems is A368601.
For prime indices we have A370590, without n A370585, see also A370591.
This is the maximal case of A370636 requiring n, complement A370637.
This is the maximal case of A370639, complement A370589.
Without requiring n we have A370640.
Dominated by A370819.
A048793 lists binary indices, A000120 length, A272020 reverse, A029931 sum.
A058891 counts set-systems, A003465 covering, A323818 connected.
A070939 gives length of binary expansion.
A096111 gives product of binary indices.
A367902 counts choosable set-systems, ranks A367906, unlabeled A368095.
A367903 counts non-choosable set-systems, ranks A367907, unlabeled A368094.

Programs

  • Mathematica
    bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
    Table[Length[Select[Subsets[Range[n],{IntegerLength[n,2]}],MemberQ[#,n] && Length[Union[Sort/@Select[Tuples[bpe/@#], UnsameQ@@#&]]]>0&]],{n,0,25}]

Extensions

More terms from Jinyuan Wang, Mar 28 2025

A370591 Number of minimal subsets of {1..n} such that it is not possible to choose a different prime factor of each element (non-choosable).

Original entry on oeis.org

0, 1, 1, 1, 2, 2, 4, 4, 7, 11, 16, 16, 30, 30, 39, 73
Offset: 0

Views

Author

Gus Wiseman, Feb 28 2024

Keywords

Examples

			The a(1) = 1 through a(10) = 16 subsets:
{1}  {1}  {1}  {1}    {1}    {1}      {1}      {1}      {1}      {1}
               {2,4}  {2,4}  {2,4}    {2,4}    {2,4}    {2,4}    {2,4}
                             {2,3,6}  {2,3,6}  {2,8}    {2,8}    {2,8}
                             {3,4,6}  {3,4,6}  {4,8}    {3,9}    {3,9}
                                               {2,3,6}  {4,8}    {4,8}
                                               {3,4,6}  {2,3,6}  {2,3,6}
                                               {3,6,8}  {2,6,9}  {2,6,9}
                                                        {3,4,6}  {3,4,6}
                                                        {3,6,8}  {3,6,8}
                                                        {4,6,9}  {4,6,9}
                                                        {6,8,9}  {6,8,9}
                                                                 {2,5,10}
                                                                 {4,5,10}
                                                                 {5,8,10}
                                                                 {3,5,6,10}
                                                                 {5,6,9,10}
		

Crossrefs

Minimal case of A370583, complement A370582.
For binary indices instead of factors we have A370642, minima of A370637.
A006530 gives greatest prime factor, least A020639.
A027746 lists prime factors, indices A112798, length A001222.
A355741 counts choices of a prime factor of each prime index.
A367902 counts choosable set-systems, ranks A367906, unlabeled A368095.
A367903 counts non-choosable set-systems, ranks A367907, unlabeled A368094.
A368098 counts choosable unlabeled multiset partitions, complement A368097.
A368100 ranks choosable multisets, complement A355529.
A368414 counts choosable factorizations, complement A368413.
A370585 counts maximal choosable sets.
A370592 counts choosable partitions, complement A370593.

Programs

  • Mathematica
    Table[Length[fasmin[Select[Subsets[Range[n]], Length[Select[Tuples[prix/@#],UnsameQ@@#&]]==0&]]], {n,0,15}]

A370807 Number of integer partitions of n into parts > 1 such that it is not possible to choose a different prime factor of each part.

Original entry on oeis.org

0, 0, 0, 0, 1, 0, 3, 1, 4, 4, 8, 9, 15, 17, 25, 30, 43, 54, 72, 87, 115, 139, 181, 224, 283, 342, 429, 519, 647, 779, 967
Offset: 0

Views

Author

Gus Wiseman, Mar 04 2024

Keywords

Examples

			The a(0) = 0 through a(11) = 9 partitions:
  .  .  .  .  (22)  .  (33)   (322)  (44)    (333)   (55)     (443)
                       (42)          (332)   (432)   (82)     (533)
                       (222)         (422)   (522)   (433)    (542)
                                     (2222)  (3222)  (442)    (632)
                                                     (622)    (722)
                                                     (3322)   (3332)
                                                     (4222)   (4322)
                                                     (22222)  (5222)
                                                              (32222)
		

Crossrefs

These partitions are ranked by the odd terms of A355529, complement A368100.
The version for set-systems is A367903, complement A367902.
The version for factorizations is A368413, complement A368414.
With ones allowed we have A370593, complement A370592.
For a unique choice we have A370594, ranks A370647.
The version for divisors instead of factors is A370804, complement A370805.
A006530 gives greatest prime factor, least A020639.
A027746 lists prime factors, A112798 indices, length A001222.
A239312 counts condensed partitions, ranks A368110.
A355741 counts choices of a prime factor of each prime index.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],FreeQ[#,1] && Length[Select[Tuples[If[#==1,{},First/@FactorInteger[#]]&/@#],UnsameQ@@#&]]==0&]],{n,0,30}]

A370588 Number of subsets of {1..n} containing n such that only one set can be obtained by choosing a different prime factor of each element.

Original entry on oeis.org

0, 0, 1, 2, 2, 6, 6, 18, 12, 20, 36, 104, 76, 284, 320, 408, 252, 1548, 872, 3968, 2800, 4704, 8568, 24008, 10832, 14832, 40688, 18240, 43632, 176240, 97344, 449824, 95328, 404992, 760752, 698864, 436464, 3296048, 3564576, 4057904, 2677776, 16892352, 8676576
Offset: 0

Views

Author

Gus Wiseman, Feb 28 2024

Keywords

Comments

For example, the only choice of a different prime factor of each element of (4,5,6) is (2,5,3), so {4,5,6} is counted under a(6).

Examples

			The a(0) = 0 through a(8) = 12 subsets:
  .  .  {2}  {3}    {4}    {5}      {2,6}    {7}        {8}
             {2,3}  {3,4}  {2,5}    {3,6}    {2,7}      {3,8}
                           {3,5}    {4,6}    {3,7}      {5,8}
                           {4,5}    {2,5,6}  {4,7}      {6,8}
                           {2,3,5}  {3,5,6}  {5,7}      {7,8}
                           {3,4,5}  {4,5,6}  {2,3,7}    {3,5,8}
                                             {2,5,7}    {3,7,8}
                                             {2,6,7}    {5,6,8}
                                             {3,4,7}    {5,7,8}
                                             {3,5,7}    {6,7,8}
                                             {3,6,7}    {3,5,7,8}
                                             {4,5,7}    {5,6,7,8}
                                             {4,6,7}
                                             {2,3,5,7}
                                             {2,5,6,7}
                                             {3,4,5,7}
                                             {3,5,6,7}
                                             {4,5,6,7}
		

Crossrefs

First differences of A370584, cf. A370582, complement A370583.
For any number of choices we have A370586, complement A370587.
For binary indices see A370638, A370639, complement A370589.
A006530 gives greatest prime factor, least A020639.
A027746 lists prime factors, indices A112798, length A001222.
A355741 counts choices of a prime factor of each prime index.
A367902 counts choosable set-systems, ranks A367906, unlabeled A368095.
A367903 counts non-choosable set-systems, ranks A367907, unlabeled A368094.
A368098 counts choosable unlabeled multiset partitions, complement A368097.
A368100 ranks choosable multisets, complement A355529.
A368414 counts choosable factorizations, complement A368413.
A370585 counts maximal choosable sets.
A370592 counts choosable partitions, complement A370593.
A370636 counts choosable subsets for binary indices, complement A370637.

Programs

  • Mathematica
    Table[Length[Select[Subsets[Range[n]],MemberQ[#,n] && Length[Select[Tuples[If[#==1,{},First/@FactorInteger[#]]&/@#], UnsameQ@@#&]]==1&]],{n,0,10}]

Extensions

More terms from Jinyuan Wang, Mar 28 2025

A370590 Number of maximal subsets of {1..n} containing n such that it is possible to choose a different prime factor of each element (choosable).

Original entry on oeis.org

0, 0, 1, 1, 1, 2, 3, 5, 2, 4, 14, 25, 13, 38, 46, 66, 28, 178, 57, 235, 106, 238, 656, 1235, 288, 445, 2192, 664, 2016, 6840, 2300, 9140, 888, 6236, 17692, 14724, 7320, 56000, 60472, 70252, 37160, 223884, 66428, 290312, 113172, 80544, 517392, 1001420, 114336
Offset: 0

Views

Author

Gus Wiseman, Feb 28 2024

Keywords

Comments

For example, the set {4,7,9,10} has choice (2,7,3,5) so is counted under a(10).

Examples

			The a(0) = 0 through a(10) = 14 subsets (A = 10):
  .  .  2  23  34  235  256  2357  3578  2579  237A
                   345  356  2567  5678  4579  267A
                        456  3457        5679  279A
                             3567        5789  347A
                             4567              357A
                                               367A
                                               378A
                                               467A
                                               479A
                                               567A
                                               579A
                                               678A
                                               679A
                                               789A
		

Crossrefs

Not requiring n gives A370585, maximal case of A370582, complement A370583.
Maximal case of A370586, complement A370587, unique A370588.
An opposite version is A370591.
A006530 gives greatest prime factor, least A020639.
A027746 lists prime factors, indices A112798, length A001222.
A355741 counts choices of a prime factor of each prime index.
A367902 counts choosable set-systems, ranks A367906, unlabeled A368095.
A367903 counts non-choosable set-systems, ranks A367907, unlabeled A368094.
A368098 counts choosable unlabeled multiset partitions, complement A368097.
A368100 ranks choosable multisets, complement A355529.
A368414 counts choosable factorizations, complement A368413.
A370592 counts choosable partitions, complement A370593.

Programs

  • Mathematica
    Table[Length[Select[Subsets[Range[n],{PrimePi[n]}],MemberQ[#,n]&&Length[Select[Tuples[If[#==1,{},First/@FactorInteger[#]]&/@#],UnsameQ@@#&]]>0&]],{n,0,10}]

Extensions

More terms from Jinyuan Wang, Feb 14 2025
Previous Showing 11-17 of 17 results.