A372689
Positive integers whose binary indices (positions of ones in reversed binary expansion) sum to a prime number.
Original entry on oeis.org
2, 3, 4, 6, 9, 11, 12, 16, 18, 23, 26, 29, 33, 38, 41, 43, 44, 48, 50, 55, 58, 61, 64, 69, 71, 72, 74, 79, 81, 86, 89, 91, 92, 96, 101, 103, 104, 106, 111, 113, 118, 121, 131, 132, 134, 137, 142, 144, 149, 151, 152, 154, 159, 163, 164, 166, 169, 174, 176, 181
Offset: 1
The terms together with their binary expansions and binary indices begin:
2: 10 ~ {2}
3: 11 ~ {1,2}
4: 100 ~ {3}
6: 110 ~ {2,3}
9: 1001 ~ {1,4}
11: 1011 ~ {1,2,4}
12: 1100 ~ {3,4}
16: 10000 ~ {5}
18: 10010 ~ {2,5}
23: 10111 ~ {1,2,3,5}
26: 11010 ~ {2,4,5}
29: 11101 ~ {1,3,4,5}
33: 100001 ~ {1,6}
38: 100110 ~ {2,3,6}
41: 101001 ~ {1,4,6}
43: 101011 ~ {1,2,4,6}
44: 101100 ~ {3,4,6}
48: 110000 ~ {5,6}
50: 110010 ~ {2,5,6}
55: 110111 ~ {1,2,3,5,6}
58: 111010 ~ {2,4,5,6}
61: 111101 ~ {1,3,4,5,6}
Numbers k such that
A029931(k) is prime.
Union of prime-indexed rows of
A118462.
For prime indices instead of binary indices we have
A316091.
A372687 counts strict partitions of prime binary rank, counted by
A372851.
A372689 lists numbers whose binary indices sum to a prime.
A372885 lists primes whose binary indices sum to a prime, indices
A372886.
Binary indices:
A372885
Prime numbers whose binary indices (positions of ones in reversed binary expansion) sum to another prime number.
Original entry on oeis.org
2, 3, 11, 23, 29, 41, 43, 61, 71, 79, 89, 101, 103, 113, 131, 137, 149, 151, 163, 181, 191, 197, 211, 239, 269, 271, 281, 293, 307, 331, 349, 353, 373, 383, 401, 433, 457, 491, 503, 509, 523, 541, 547, 593, 641, 683, 701, 709, 743, 751, 761, 773, 827, 863, 887
Offset: 1
The binary indices of 89 are {1,4,5,7}, with sum 17, which is prime, so 89 is in the sequence.
The terms together with their binary expansions and binary indices begin:
2: 10 ~ {2}
3: 11 ~ {1,2}
11: 1011 ~ {1,2,4}
23: 10111 ~ {1,2,3,5}
29: 11101 ~ {1,3,4,5}
41: 101001 ~ {1,4,6}
43: 101011 ~ {1,2,4,6}
61: 111101 ~ {1,3,4,5,6}
71: 1000111 ~ {1,2,3,7}
79: 1001111 ~ {1,2,3,4,7}
89: 1011001 ~ {1,4,5,7}
101: 1100101 ~ {1,3,6,7}
103: 1100111 ~ {1,2,3,6,7}
113: 1110001 ~ {1,5,6,7}
131: 10000011 ~ {1,2,8}
137: 10001001 ~ {1,4,8}
149: 10010101 ~ {1,3,5,8}
151: 10010111 ~ {1,2,3,5,8}
163: 10100011 ~ {1,2,6,8}
181: 10110101 ~ {1,3,5,6,8}
191: 10111111 ~ {1,2,3,4,5,6,8}
197: 11000101 ~ {1,3,7,8}
For prime instead of binary indices we have
A006450, prime case of
A316091.
Prime numbers p such that
A029931(p) is also prime.
The indices of these primes are
A372886.
A372687 counts strict partitions of prime binary rank, counted by
A372851.
A372688 counts partitions of prime binary rank, with Heinz numbers
A277319.
Binary indices:
-
filter:= proc(p)
local L,i,t;
L:= convert(p,base,2);
isprime(add(i*L[i],i=1..nops(L)))
end proc:
select(filter, [seq(ithprime(i),i=1..200)]); # Robert Israel, Jun 19 2025
-
Select[Range[100],PrimeQ[#] && PrimeQ[Total[First/@Position[Reverse[IntegerDigits[#,2]],1]]]&]
A372886
Indices of prime numbers whose binary indices (positions of ones in reversed binary expansion) sum to another prime number.
Original entry on oeis.org
1, 2, 5, 9, 10, 13, 14, 18, 20, 22, 24, 26, 27, 30, 32, 33, 35, 36, 38, 42, 43, 45, 47, 52, 57, 58, 60, 62, 63, 67, 70, 71, 74, 76, 79, 84, 88, 94, 96, 97, 99, 100, 101, 108, 116, 124, 126, 127, 132, 133, 135, 137, 144, 150, 154, 156, 160, 161, 162, 164, 172
Offset: 1
The binary indices of 89 = prime(24) are {1,4,5,7}, with sum 17, which is prime, so 24 is in the sequence.
Numbers k such that
A029931(prime(k)) is prime.
Indices of primes that belong to
A372689.
The indexed prime numbers themselves are
A372885.
Binary indices:
A372687 counts strict partitions of prime binary rank, counted by
A372851.
A372688 counts partitions of prime binary rank, with Heinz numbers
A277319.
-
filter:= proc(p)
local L,i,t;
L:= convert(p,base,2);
isprime(add(i*L[i],i=1..nops(L)))
end proc:
select(t -> filter(ithprime(t)), [$1..1000]); # Robert Israel, Jun 19 2025
-
Select[Range[100],PrimeQ[Total[First /@ Position[Reverse[IntegerDigits[Prime[#],2]],1]]]&]
A372890
Sum of binary ranks of all integer partitions of n, where the binary rank of a partition y is given by Sum_i 2^(y_i-1).
Original entry on oeis.org
0, 1, 4, 10, 25, 52, 115, 228, 471, 931, 1871, 3687, 7373, 14572, 29049, 57694, 115058, 229101, 457392, 912469, 1822945, 3640998, 7277426, 14544436, 29079423, 58137188, 116254386, 232465342, 464889800, 929691662, 1859302291, 3718428513, 7436694889, 14873042016
Offset: 0
The partitions of 4 are (4), (3,1), (2,2), (2,1,1), (1,1,1,1), with respective binary ranks 8, 5, 4, 4, 4 with sum 25, so a(4) = 25.
For Heinz number (not binary rank) we have
A145519, row sums of
A215366.
A005117 gives Heinz numbers of strict integer partitions.
A118457 lists strict partitions in Mathematica order.
A277905 groups all positive integers by binary rank of prime indices.
-
b:= proc(n, i) option remember; `if`(n=0 or i=1, [1, n],
b(n, i-1)+(p->[0, p[1]*2^(i-1)]+p)(b(n-i, min(n-i, i))))
end:
a:= n-> b(n$2)[2]:
seq(a(n), n=0..33); # Alois P. Heinz, May 23 2024
-
Table[Total[Total[2^(#-1)]&/@IntegerPartitions[n]],{n,0,10}]
A372888
Sum of binary ranks of all strict integer partitions of n, where the binary rank of a partition y is given by Sum_i 2^(y_i-1).
Original entry on oeis.org
0, 1, 2, 7, 13, 31, 66, 138, 279, 581, 1173, 2375, 4783, 9630, 19316, 38802, 77689, 155673, 311639, 623845, 1248179, 2497719, 4996387, 9995304, 19992908, 39990902, 79986136, 159983241, 319975073, 639971495, 1279962115, 2559966847, 5119970499, 10240030209
Offset: 0
The strict partitions of 6 are (6), (5,1), (4,2), (3,2,1), with respective binary ranks 32, 17, 10, 7 with sum 66, so a(6) = 66.
Row sums of
A118462 (binary ranks of strict partitions).
For Heinz number the non-strict version is
A145519, row sums of
A215366.
For Heinz number (not binary rank) we have
A147655, row sums of
A246867.
A277905 groups all positive integers by binary rank of prime indices.
-
b:= proc(n, i) option remember; `if`(i*(i+1)/2 [0, p[1]*2^(i-1)]
+p)(b(n-i, min(n-i, i-1)))))
end:
a:= n-> b(n$2)[2]:
seq(a(n), n=0..33); # Alois P. Heinz, May 23 2024
-
Table[Total[Total[2^(#-1)]& /@ Select[IntegerPartitions[n],UnsameQ@@#&]],{n,0,10}]
A372887
Number of integer partitions of n whose distinct parts are the binary indices of some prime number.
Original entry on oeis.org
0, 0, 1, 1, 3, 3, 6, 8, 12, 14, 21, 29, 36, 48, 56, 74, 94, 123, 144, 195, 235, 301, 356, 456, 538, 679, 803, 997, 1189, 1467, 1716, 2103, 2488, 2968, 3517, 4185, 4907, 5834, 6850, 8032, 9459, 11073, 12933, 15130, 17652, 20480, 24011, 27851, 32344, 37520
Offset: 0
The partition y = (4,3,1,1) has distinct parts {1,3,4}, which are the binary indices of 13, which is prime, so y is counted under a(9).
The a(2) = 1 through a(9) = 14 partitions:
(2) (21) (22) (221) (51) (331) (431) (3321)
(31) (311) (222) (421) (521) (4221)
(211) (2111) (321) (511) (2222) (4311)
(2211) (2221) (3221) (5211)
(3111) (3211) (3311) (22221)
(21111) (22111) (4211) (32211)
(31111) (5111) (33111)
(211111) (22211) (42111)
(32111) (51111)
(221111) (222111)
(311111) (321111)
(2111111) (2211111)
(3111111)
(21111111)
These partitions have Heinz numbers
A372850.
A014499 lists binary indices of prime numbers.
A372689 lists numbers whose binary indices sum to a prime.
A372885 lists primes whose binary indices sum to a prime, indices
A372886.
Binary indices:
-
Table[Length[Select[IntegerPartitions[n], PrimeQ[Total[2^(Union[#]-1)]]&]],{n,0,30}]
A373120
Number of distinct possible binary ranks of integer partitions of n, where the binary rank of a partition y is given by Sum_i 2^(y_i-1).
Original entry on oeis.org
1, 1, 1, 2, 3, 4, 6, 8, 11, 15, 20, 26, 33, 43, 55, 70, 89, 109, 136, 167, 206, 251, 306, 371, 445, 535, 639, 759, 904, 1069, 1262, 1489, 1747, 2047, 2390, 2784, 3237, 3754, 4350, 5027, 5798, 6680, 7671, 8808, 10091, 11543, 13190, 15040, 17128, 19477, 22118
Offset: 0
The partitions of 4 are (4), (3,1), (2,2), (2,1,1), (1,1,1,1), with respective binary ranks 8, 5, 4, 4, 4, so a(4) = 3.
A118462 lists binary ranks of strict integer partitions, row sums
A372888.
A277905 groups all positive integers by binary rank of prime indices.
A372890 adds up binary ranks of integer partitions.
Comments