A377529
Expansion of e.g.f. 1/(1 - x * exp(x))^2.
Original entry on oeis.org
1, 2, 10, 66, 560, 5770, 69852, 970886, 15228880, 266006610, 5119447700, 107617719022, 2453167135608, 60268223308826, 1587381621990556, 44619277892537910, 1333135910963656352, 42189279001183102882, 1409741875877923927332, 49597905017847180008126
Offset: 0
-
With[{nn=20},CoefficientList[Series[1/(1-x Exp[x])^2,{x,0,nn}],x] Range[0,nn]!] (* Harvey P. Dale, Feb 04 2025 *)
-
a(n) = n!*sum(k=0, n, (k+1)*k^(n-k)/(n-k)!);
A381207
Expansion of e.g.f. 1/(1 - x*cosh(x))^3.
Original entry on oeis.org
1, 3, 12, 69, 504, 4335, 43200, 490161, 6220032, 87242427, 1340305920, 22375475133, 403237638144, 7801208775399, 161245892161536, 3545854432602345, 82653484859228160, 2035605515838402291, 52814589875313573888, 1439814136866851346357, 41145786213980645621760
Offset: 0
-
a185951(n, k) = binomial(n, k)/2^k*sum(j=0, k, (2*j-k)^(n-k)*binomial(k, j));
a(n) = sum(k=0, n, (k+2)!*a185951(n, k))/2;
A379942
Expansion of e.g.f. 1/( exp(-x) - x )^3.
Original entry on oeis.org
1, 6, 45, 411, 4449, 55803, 796581, 12757503, 226588257, 4420898595, 94001021589, 2163619250895, 53598352999905, 1421924243354787, 40221778417553637, 1208471542554184767, 38434396264371831873, 1289995362325669726659, 45567027291743788320405
Offset: 0
-
my(N=20, x='x+O('x^N)); Vec(serlaplace(1/(exp(-x)-x)^3))
-
a(n) = n!*sum(k=0, n, (k+3)^(n-k)*binomial(k+2, 2)/(n-k)!);
A379993
Expansion of e.g.f. 1/(1 - x * exp(x))^4.
Original entry on oeis.org
1, 4, 28, 252, 2776, 35940, 533304, 8908228, 165247072, 3368072196, 74782987240, 1796037420804, 46379441090448, 1281203788073092, 37694510810334616, 1176606639075726660, 38833052393329645504, 1351066066253778043908, 49417629820950190273992
Offset: 0
-
nmax=18;CoefficientList[Series[1/(1 - x * Exp[x])^4,{x,0,nmax}],x]Range[0,nmax]! (* Stefano Spezia, Feb 05 2025 *)
-
a(n) = n!*sum(k=0, n, k^(n-k)*binomial(k+3, 3)/(n-k)!);
A381209
Expansion of e.g.f. 1/(1 - x*cos(x))^3.
Original entry on oeis.org
1, 3, 12, 51, 216, 735, 0, -39081, -575232, -6047973, -48314880, -189159333, 3046957056, 99745485879, 1789140627456, 23433663134655, 185580069027840, -1250544374605389, -94781673979379712, -2543434372808424957, -47763303489939701760, -586864592847636893937
Offset: 0
-
a185951(n, k) = binomial(n, k)/2^k*sum(j=0, k, (2*j-k)^(n-k)*binomial(k, j));
a(n) = sum(k=0, n, (k+2)!*I^(n-k)*a185951(n, k))/2;
A381210
Expansion of e.g.f. 1/(1 - sinh(x))^3.
Original entry on oeis.org
1, 3, 12, 63, 408, 3123, 27552, 275103, 3065088, 37682883, 506606592, 7392091743, 116329479168, 1963781841843, 35395627487232, 678401549017983, 13776623985819648, 295481239628640003, 6674320861079273472, 158364407589097613823, 3937958237874411798528
Offset: 0
-
a136630(n, k) = 1/(2^k*k!)*sum(j=0, k, (-1)^(k-j)*(2*j-k)^n*binomial(k, j));
a(n) = sum(k=0, n, (k+2)!*a136630(n, k))/2;
A381211
Expansion of e.g.f. 1/(1 - sin(x))^3.
Original entry on oeis.org
1, 3, 12, 57, 312, 1923, 13152, 98697, 805632, 7102563, 67233792, 679970937, 7315786752, 83421156003, 1004860895232, 12749105088777, 169926064668672, 2373678328434243, 34676591077097472, 528758667342524217, 8400613520498491392, 138830752520282729283
Offset: 0
-
a136630(n, k) = 1/(2^k*k!)*sum(j=0, k, (-1)^(k-j)*(2*j-k)^n*binomial(k, j));
a(n) = sum(k=0, n, (k+2)!*I^(n-k)*a136630(n, k))/2;
A380841
Array read by ascending antidiagonals: A(n,k) = n! * [x^n] 1/(1 - x*exp(x))^k.
Original entry on oeis.org
1, 0, 1, 0, 1, 1, 0, 4, 2, 1, 0, 21, 10, 3, 1, 0, 148, 66, 18, 4, 1, 0, 1305, 560, 141, 28, 5, 1, 0, 13806, 5770, 1380, 252, 40, 6, 1, 0, 170401, 69852, 16095, 2776, 405, 54, 7, 1, 0, 2403640, 970886, 217458, 35940, 4940, 606, 70, 8, 1, 0, 38143377, 15228880, 3335745, 533304, 70045, 8088, 861, 88, 9, 1
Offset: 0
Array begins as:
1, 1, 1, 1, 1, 1, 1, ...
0, 1, 2, 3, 4, 5, 6, ...
0, 4, 10, 18, 28, 40, 54, ...
0, 21, 66, 141, 252, 405, 606, ...
0, 148, 560, 1380, 2776, 4940, 8088, ...
0, 1305, 5770, 16095, 35940, 70045, 124350, ...
...
-
A[n_,k_]:=n!SeriesCoefficient[1/(1-x*Exp[x])^k,{x,0,n}]; Table[A[n-k,k],{n,0,10},{k,0,n}]//Flatten
A377582
Expansion of e.g.f. (1 + x * exp(x))^3.
Original entry on oeis.org
1, 3, 12, 51, 228, 1035, 4698, 21063, 92424, 395091, 1643790, 6664383, 26387100, 102286587, 389125506, 1455994935, 5368721808, 19541252259, 70312410774, 250408115823, 883617559140, 3092276105163, 10740749281482, 37053754521831, 127037475064728, 433073722098675
Offset: 0
A379990
Expansion of e.g.f. exp(-2*x)/(exp(-x) - x)^3.
Original entry on oeis.org
1, 4, 25, 205, 2065, 24601, 337837, 5249581, 91006657, 1740663937, 36402220141, 826159146253, 20220201899377, 530828186303377, 14878044338021677, 443397290411503021, 14000282854007503105, 466866129420834410881, 16395362179348570608205, 604794784980600986425645
Offset: 0
Showing 1-10 of 12 results.
Comments