A202023 Triangle T(n,k), read by rows, given by (1, 0, 1, 0, 0, 0, 0, 0, 0, 0, ...) DELTA (0, 1, -1, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938.
1, 1, 0, 1, 1, 0, 1, 3, 0, 0, 1, 6, 1, 0, 0, 1, 10, 5, 0, 0, 0, 1, 15, 15, 1, 0, 0, 0, 1, 21, 35, 7, 0, 0, 0, 0, 1, 28, 70, 28, 1, 0, 0, 0, 0, 1, 36, 126, 84, 9, 0, 0, 0, 0, 0, 1, 45, 210, 210, 45, 1, 0, 0, 0, 0, 0
Offset: 0
Examples
Triangle begins : 1 1, 0 1, 1, 0 1, 3, 0, 0 1, 6, 1, 0, 0 1, 10, 5, 0, 0, 0 1, 15, 15, 1, 0, 0, 0 1, 21, 35, 7, 0, 0, 0, 0 1, 28, 70, 28, 1, 0, 0, 0, 0
Crossrefs
Programs
-
Mathematica
Table[Length[Select[Subsets[Range[n-1]],Length[Split[#,#2==#1+1&]]==k&]],{n,0,10},{k,0,n}] (* Gus Wiseman, Jul 08 2025 *)
Formula
T(n,k) = binomial(n,2k).
G.f.: (1-x)/((1-x)^2-y*x^2).
T(n,k)= Sum_{j, j>=0} T(n-1-j,k-1)*j with T(n,0)=1 and T(n,k)= 0 if k<0 or if n
T(n,k) = 2*T(n-1,k) + T(n-2,k-1) - T(n-2,k) for n>1, T(0,0) = T(1,0) = 1, T(1,1) = 0, T(n,k) = 0 if k>n or if k<0. - Philippe Deléham, Nov 10 2013
A384883 Number of maximal sparse subsets of the binary indices of n, where a set is sparse iff 1 is not a first difference.
1, 1, 1, 2, 1, 1, 2, 2, 1, 1, 1, 2, 2, 2, 2, 3, 1, 1, 1, 2, 1, 1, 2, 2, 2, 2, 2, 4, 2, 2, 3, 4, 1, 1, 1, 2, 1, 1, 2, 2, 1, 1, 1, 2, 2, 2, 2, 3, 2, 2, 2, 4, 2, 2, 4, 4, 2, 2, 2, 4, 3, 3, 4, 5, 1, 1, 1, 2, 1, 1, 2, 2, 1, 1, 1, 2, 2, 2, 2, 3, 1, 1, 1, 2, 1, 1, 2
Offset: 0
Keywords
Comments
A binary index of n is any position of a 1 in its reversed binary expansion. The binary indices of n are row n of A048793.
Examples
The binary indices of 27 are {1,2,4,5}, with maximal sparse subsets {{1,4},{1,5},{2,4},{2,5}}, so a(27) = 4.
Crossrefs
Programs
-
Mathematica
spars[S_]:=Select[Subsets[S],FreeQ[Differences[#],1]&]; bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1]; maximize[sys_]:=Complement@@Prepend[Most[Subsets[#]]&/@sys,sys]; Table[Length[maximize[spars[bpe[n]]]],{n,0,100}]
A384906 Number of maximal anti-runs of consecutive parts not increasing by 1 in the prime indices of n (with multiplicity).
0, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 1, 2, 1, 2, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1
Offset: 1
Keywords
Comments
Examples
The prime indices of 462 are {1,2,4,5}, with maximal anti-runs ((1),(2,4),(5)), so a(462) = 3.
Programs
-
Mathematica
prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; Table[Length[Split[prix[n],#2!=#1+1&]],{n,100}]
A385213 Number of maximal runs of consecutive parts increasing by 1 in the prime indices of n (with multiplicity).
0, 1, 1, 2, 1, 1, 1, 3, 2, 2, 1, 2, 1, 2, 1, 4, 1, 2, 1, 3, 2, 2, 1, 3, 2, 2, 3, 3, 1, 1, 1, 5, 2, 2, 1, 3, 1, 2, 2, 4, 1, 2, 1, 3, 2, 2, 1, 4, 2, 3, 2, 3, 1, 3, 2, 4, 2, 2, 1, 2, 1, 2, 3, 6, 2, 2, 1, 3, 2, 2, 1, 4, 1, 2, 2, 3, 1, 2, 1, 5, 4, 2, 1, 3, 2, 2, 2
Offset: 1
Keywords
Comments
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
Examples
The prime indices of 24 are {1,1,1,2}, with maximal runs ((1),(1),(1,2)), so a(24) = 3.
Crossrefs
Programs
-
Mathematica
prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; Table[Length[Split[prix[n],#2==#1+1&]],{n,100}]
A385572 Number of subsets of {1..n} with the same number of maximal runs (increasing by 1) as maximal anti-runs (increasing by more than 1).
1, 2, 3, 4, 7, 12, 19, 34, 63, 112, 207, 394, 739, 1398, 2687, 5152, 9891, 19128, 37039, 71754, 139459, 271522, 528999, 1032308, 2017291, 3945186, 7723203, 15134440, 29679407, 58245068, 114389683, 224796210, 442021743, 869658304, 1711914351, 3371515306
Offset: 0
Keywords
Comments
Also the number of subsets of {1..n} with the same number of adjacent elements increasing by 1 as adjacent elements increasing by more than 1.
Examples
The set {2,3,5,6,8} has maximal runs ((2,3),(5,6),(8)) and maximal anti-runs ((2),(3,5),(6,8)) so is counted under a(8). The a(0) = 1 through a(6) = 19 subsets: {} {} {} {} {} {} {} {1} {1} {1} {1} {1} {1} {2} {2} {2} {2} {2} {3} {3} {3} {3} {4} {4} {4} {1,2,4} {5} {5} {1,3,4} {1,2,4} {6} {1,2,5} {1,2,4} {1,3,4} {1,2,5} {1,4,5} {1,2,6} {2,3,5} {1,3,4} {2,4,5} {1,4,5} {1,5,6} {2,3,5} {2,3,6} {2,4,5} {2,5,6} {3,4,6} {3,5,6}
Links
- Christian Sievers, Table of n, a(n) for n = 0..3328
Crossrefs
Programs
-
Maple
a:= proc(n) option remember; `if`(n<5, [1, 2, 3, 4, 7][n+1], ((3*n-4)*a(n-1)- (3*n-5)*a(n-2)+(5*n-12)*a(n-3)-2*(4*n-11)*a(n-4)+4*(n-3)*a(n-5))/(n-1)) end: seq(a(n), n=0..35); # Alois P. Heinz, Jul 06 2025
-
Mathematica
Table[Length[Select[Subsets[Range[n]],Length[Split[#,#2==#1+1&]]==Length[Split[#,#2!=#1+1&]]&]],{n,0,10}]
-
PARI
a(n)=polcoef([1,1,1]*[x,0,0;x,x^2,1;0,x,x]^n*[1,0,0]~,n) \\ Christian Sievers, Jul 06 2025
Formula
Let M be the matrix [1,0,0; 1,x,1/x; 0,1,1]. Then a(n) is the sum of the constant terms of the entries in the left column of M^n. - Christian Sievers, Jul 06 2025
Extensions
a(21) and beyond from Christian Sievers, Jul 06 2025
A384907 Number of permutations of {1..n} with all distinct lengths of maximal anti-runs (not increasing by 1).
1, 1, 1, 5, 17, 97, 587, 4291, 33109, 319967, 3106433, 35554459, 419889707, 5632467097, 77342295637, 1201240551077, 18804238105133, 328322081898745, 5832312989183807, 113154541564902427, 2229027473451951265, 47899977701182298255, 1037672943682453127645
Offset: 0
Keywords
Examples
The permutation (1,2,4,3,5,7,8,6,9) has maximal anti-runs ((1),(2,4,3,5,7),(8,6,9)), with lengths (1,5,3), so is counted under a(9). The a(0) = 1 through a(4) = 17 permutations: () (1) (2,1) (1,3,2) (1,2,4,3) (2,1,3) (1,3,2,4) (2,3,1) (1,4,2,3) (3,1,2) (1,4,3,2) (3,2,1) (2,1,3,4) (2,1,4,3) (2,3,1,4) (2,4,1,3) (2,4,3,1) (3,1,4,2) (3,2,1,4) (3,2,4,1) (3,4,2,1) (4,1,3,2) (4,2,1,3) (4,3,1,2) (4,3,2,1)
Links
- Christian Sievers, Table of n, a(n) for n = 0..449
Crossrefs
Programs
-
Mathematica
Table[Length[Select[Permutations[Range[n]],UnsameQ@@Length/@Split[#,#2!=#1+1&]&]],{n,0,10}]
-
PARI
a(n)=if(n,my(b(n)=sum(i=0,n-1,(-1)^i*(n-i)!*binomial(n-1,i)), d=floor(sqrt(2*n)), p=polcoef(prod(i=1,n,1+x*y^i,1+O(y*y^n)*((1-x^(d+1))/(1-x))),n,y)); sum(i=1,d,b(n+1-i)*i!*polcoef(p,i)),1) \\ Christian Sievers, Jun 22 2025
Formula
Extensions
a(11) and beyond from Christian Sievers, Jun 22 2025
A385215 Number of maximal sparse submultisets of the prime indices of n, where a multiset is sparse iff 1 is not a first difference.
1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 1, 2, 1, 2, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1
Offset: 1
Keywords
Comments
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
Examples
The sparse submultisets of the prime indices of n = 8 are {{},{1},{1,1},{1,1,1}}, with maximization {{1,1,1}}. So a(8) = 1. The sparse submultisets of the prime indices of n = 462 are {{},{1},{2},{4},{5},{1,4},{2,4},{1,5},{2,5}}, with maximization {{1,4},{1,5},{2,4},{2,5}}, so a(462) = 4. The prime indices of n together their a(n) maximal sparse submultisets for n = 1, 6, 210, 462, 30030, 46410: {} {1,2} {1,2,3,4} {1,2,4,5} {1,2,3,4,5,6} {1,2,3,4,6,7} ------------------------------------------------------------ {} {1} {1,3} {1,4} {2,5} {1,3,6} {2} {1,4} {1,5} {1,3,5} {1,3,7} {2,4} {2,4} {1,3,6} {1,4,6} {2,5} {1,4,6} {1,4,7} {2,4,6} {2,4,6} {2,4,7}
Crossrefs
Programs
-
Mathematica
prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; maxq[els_]:=Select[els,Not[Or@@Table[Divisible[oth,#],{oth,DeleteCases[els,#]}]]&]; Table[Length[maxq[Select[Divisors[n],FreeQ[Differences[prix[#]],1]&]]],{n,30}]
Formula
a(n) <= A166469(n).
A385575 Numbers whose binary indices have the same number of adjacent parts differing by 1 as adjacent parts differing by more than 1.
1, 2, 4, 8, 11, 13, 16, 19, 22, 25, 26, 32, 35, 38, 44, 49, 50, 52, 64, 67, 70, 76, 87, 88, 91, 93, 97, 98, 100, 104, 107, 109, 117, 128, 131, 134, 140, 151, 152, 155, 157, 167, 174, 176, 179, 182, 185, 186, 193, 194, 196, 200, 203, 205, 208, 211, 214, 217
Offset: 1
Keywords
Comments
A binary index of n is any position of a 1 in its reversed binary expansion. The binary indices of n are row n of A048793.
Examples
The terms together with their binary expansions and binary indices begin: 1: 1 ~ {1} 2: 10 ~ {2} 4: 100 ~ {3} 8: 1000 ~ {4} 11: 1011 ~ {1,2,4} 13: 1101 ~ {1,3,4} 16: 10000 ~ {5} 19: 10011 ~ {1,2,5} 22: 10110 ~ {2,3,5} 25: 11001 ~ {1,4,5} 26: 11010 ~ {2,4,5} 32: 100000 ~ {6} 35: 100011 ~ {1,2,6} 38: 100110 ~ {2,3,6} 44: 101100 ~ {3,4,6} 49: 110001 ~ {1,5,6} 50: 110010 ~ {2,5,6} 52: 110100 ~ {3,5,6} 64: 1000000 ~ {7} 67: 1000011 ~ {1,2,7} 70: 1000110 ~ {2,3,7} 76: 1001100 ~ {3,4,7} 87: 1010111 ~ {1,2,3,5,7} 88: 1011000 ~ {4,5,7} 91: 1011011 ~ {1,2,4,5,7} 93: 1011101 ~ {1,3,4,5,7} 97: 1100001 ~ {1,6,7} 98: 1100010 ~ {2,6,7} 100: 1100100 ~ {3,6,7}
Crossrefs
Programs
-
Mathematica
bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1]; Select[Range[100],Length[Split[bpe[#],#2==#1+1&]]==Length[Split[bpe[#],#2!=#1+1&]]&]
-
PARI
is_ok(n)=hammingweight(n)==2*hammingweight(bitand(n,n>>1))+1 \\ Christian Sievers, Jul 18 2025
A385574 Number of integer partitions of n with the same number of adjacent equal parts as adjacent unequal parts.
1, 1, 1, 1, 2, 3, 2, 4, 5, 6, 10, 11, 13, 17, 20, 30, 36, 44, 55, 70, 86, 98, 128, 156, 190, 235, 288, 351, 409, 499, 603, 722, 863, 1025, 1227, 1461, 1757, 2061, 2444, 2892, 3406, 3996, 4708, 5497, 6430, 7595, 8835, 10294, 12027, 13971, 16252, 18887, 21878
Offset: 0
Keywords
Comments
These are also integer partitions of n with the same number of distinct parts as maximal anti-runs of parts.
Examples
The partition (5,3,2,1,1,1,1) has 4 runs ((5),(3),(2),(1,1,1,1)) and 4 anti-runs ((5,3,2,1),(1),(1),(1)) so is counted under a(14). The a(1) = 1 through a(10) = 10 reversed partitions (A = 10): (1) (2) (3) (4) (5) (6) (7) (8) (9) (A) (112) (113) (114) (115) (116) (117) (118) (122) (133) (224) (144) (226) (223) (233) (225) (244) (11123) (11124) (334) (11223) (11125) (11134) (11224) (11233) (12223)
Links
- Christian Sievers, Table of n, a(n) for n = 0..1000
Crossrefs
These partitions are ranked by A385576.
Programs
-
Mathematica
Table[Length[Select[Reverse/@IntegerPartitions[n],Length[Union[#]]==Length[Split[#,#2!=#1&]]&]],{n,0,30}]
-
PARI
lista(n)=Vec(polcoef((prod(i=1,n,1+x^i/(t*(1-t*x^i))+O(x*x^n))-1)*t+1,0,t)) \\ Christian Sievers, Jul 18 2025
Formula
For a partition p, let s(p) be its sum, e(p) the number of equal adjacent pairs, and d(p) the number of distinct adjacent pairs. Then Sum_{p partition} x^s(p) * t^(e(p)-d(p)) = (Product_{i>=1} (1 + x^i/(t*(1-t*x^i))) - 1) * t + 1, so a(n) is the coefficient of x^n*t^0 of this expression. - Christian Sievers, Jul 18 2025
A385814 Triangle read by rows where T(n,k) is the number of integer partitions of n with k maximal proper anti-runs (sequences decreasing by more than 1).
1, 0, 1, 0, 1, 1, 0, 1, 1, 1, 0, 2, 1, 1, 1, 0, 2, 2, 1, 1, 1, 0, 3, 2, 3, 1, 1, 1, 0, 3, 4, 2, 3, 1, 1, 1, 0, 4, 5, 4, 3, 3, 1, 1, 1, 0, 5, 5, 6, 5, 3, 3, 1, 1, 1, 0, 6, 8, 7, 6, 6, 3, 3, 1, 1, 1, 0, 7, 9, 10, 8, 7, 6, 3, 3, 1, 1, 1
Offset: 0
Examples
The partition (8,5,4,2,1) has maximal proper anti-runs ((8,5),(4,2),(1)) so is counted under T(20,3). The partition (8,5,3,2,2) has maximal proper anti-runs ((8,5,3),(2),(2)) so is also counted under T(20,3). Row n = 8 counts the following partitions: . 8 611 5111 41111 32111 221111 2111111 11111111 71 521 4211 3221 311111 62 44 332 2222 22211 53 431 3311 422 Triangle begins: 1 0 1 0 1 1 0 1 1 1 0 2 1 1 1 0 2 2 1 1 1 0 3 2 3 1 1 1 0 3 4 2 3 1 1 1 0 4 5 4 3 3 1 1 1 0 5 5 6 5 3 3 1 1 1 0 6 8 7 6 6 3 3 1 1 1 0 7 9 10 8 7 6 3 3 1 1 1 0 9 11 13 12 9 8 6 3 3 1 1 1 0 10 14 16 15 13 10 8 6 3 3 1 1 1 0 12 19 18 21 17 14 11 8 6 3 3 1 1 1 0 14 21 26 23 24 19 15 11 8 6 3 3 1 1 1 0 17 26 31 33 28 26 20 16 11 8 6 3 3 1 1 1 0 19 32 37 40 39 31 28 21 16 11 8 6 3 3 1 1 1 0 23 38 47 50 47 45 34 29 22 16 11 8 6 3 3 1 1 1 0 26 45 57 61 61 54 48 36 30 22 16 11 8 6 3 3 1 1 1 0 31 53 71 75 76 70 60 51 37 31 22 16 11 8 6 3 3 1 1 1
Crossrefs
Column k = 1 is A003114.
For anti-runs instead of proper anti-runs we have A268193.
The corresponding rank statistic is A356228.
For proper runs instead of proper anti-runs we have A384881.
The strict case is A384905.
For runs instead of proper anti-runs we have A385815.
A116608 counts partitions by distinct parts.
Programs
-
Mathematica
Table[Length[Select[IntegerPartitions[n],Length[Split[#,#1>#2+1&]]==k&]],{n,0,10},{k,0,n}]
Comments