cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 61-70 of 3244 results. Next

A153518 Triangular T(n,k) = T(n-1, k) + T(n-1, k-1) + 5*T(n-2, k-1), read by rows.

Original entry on oeis.org

2, 5, 5, 2, 46, 2, 2, 123, 123, 2, 2, 135, 476, 135, 2, 2, 147, 1226, 1226, 147, 2, 2, 159, 2048, 4832, 2048, 159, 2, 2, 171, 2942, 13010, 13010, 2942, 171, 2, 2, 183, 3908, 26192, 50180, 26192, 3908, 183, 2, 2, 195, 4946, 44810, 141422, 141422, 44810, 4946, 195, 2
Offset: 1

Views

Author

Roger L. Bagula, Dec 28 2008

Keywords

Examples

			Triangle begins as:
  2;
  5,   5;
  2,  46,    2;
  2, 123,  123,     2;
  2, 135,  476,   135,      2;
  2, 147, 1226,  1226,    147,      2;
  2, 159, 2048,  4832,   2048,    159,     2;
  2, 171, 2942, 13010,  13010,   2942,   171,    2;
  2, 183, 3908, 26192,  50180,  26192,  3908,  183,   2;
  2, 195, 4946, 44810, 141422, 141422, 44810, 4946, 195, 2;
		

Crossrefs

Sequences with variable (p,q,j): A153516 (0,1,2), this sequences (0,1,3), A153520 (0,1,4), A153521 (0,1,5), A153648 (1,0,3), A153649 (1,1,4), A153650 (1,4,5), A153651 (1,5,6), A153652 (2,1,7), A153653 (2,1,8), A153654 (2,1,9), A153655 (2,1,10), A153656 (2,3,9), A153657 (2,7,10).
Cf. A123011.

Programs

  • Magma
    f:= func< n,j | Round(((3-(-1)^n)/2)*NthPrime(j)^(n-1) - 2^((3-(-1)^n)/2)) >;
    function T(n,k,p,q,j)
      if n eq 2 then return NthPrime(j);
      elif (n eq 3 and k eq 2 or n eq 4 and k eq 2 or n eq 4 and k eq 3) then return f(n,j);
      elif (k eq 1 or k eq n) then return 2;
      else return T(n-1,k,p,q,j) + T(n-1,k-1,p,q,j) + (p*j+q)*NthPrime(j)*T(n-2,k-1,p,q,j);
      end if; return T;
    end function;
    [T(n,k,0,1,3): k in [1..n], n in [1..12]]; // G. C. Greubel, Mar 04 2021
  • Maple
    A153518 := proc(n,k) option remember ; if n =1 then 2; elif n = 2 then 5; elif k=1 or k=n then 2; elif n = 3 then 46 ; elif n = 4 then 123 ; else procname(n-1,k-1)+procname(n-1,k)+5*procname(n-2,k-1) ; end: end: for n from 1 to 13 do for k from 1 to n do printf("%d,",A153518(n,k)) ; od: od: # R. J. Mathar, Jan 22 2009
  • Mathematica
    T[n_, k_, p_, q_, j_]:= T[n,k,p,q,j]= If[n==2, Prime[j], If[n==3 && k==2 || n==4 && 2<=k<=3, ((3-(-1)^n)/2)*Prime[j]^(n-1) -2^((3-(-1)^n)/2), If[k==1 || k==n, 2, T[n-1,k,p,q,j] + T[n-1,k-1,p,q,j] + (p*j+q)*Prime[j]*T[n-2,k-1,p,q,j] ]]];
    Table[T[n,k,0,1,3], {n,12}, {k,n}]//Flatten (* modified by G. C. Greubel, Mar 04 2021 *)
  • Sage
    @CachedFunction
    def f(n,j): return ((3-(-1)^n)/2)*nth_prime(j)^(n-1) - 2^((3-(-1)^n)/2)
    def T(n,k,p,q,j):
        if (n==2): return nth_prime(j)
        elif (n==3 and k==2 or n==4 and 2<=k<=3): return f(n,j)
        elif (k==1 or k==n): return 2
        else: return T(n-1,k,p,q,j) + T(n-1,k-1,p,q,j) + (p*j+q)*nth_prime(j)*T(n-2,k-1,p,q,j)
    flatten([[T(n,k,0,1,3) for k in (1..n)] for n in (1..12)]) # G. C. Greubel, Mar 04 2021
    

Formula

T(n,k) = T(n-1, k) + T(n-1, k-1) + 5*T(n-2, k-1).
Recurrence row sums: s(n) = 2*s(n-1) + 5*s(n-2), n > 4, with s(1) = 2, s(2) = 10, s(3) = 50, s(4) = 250. - R. J. Mathar, Jan 22 2009
From G. C. Greubel, Mar 04 2021: (Start)
T(n,k,p,q,j) = T(n-1,k,p,q,j) + T(n-1,k-1,p,q,j) + (p*j+q)*prime(j)*T(n-2,k-1,p,q,j) with T(2,k,p,q,j) = prime(j), T(3,2,p,q,j) = 2*prime(j)^2 -4, T(4,2,p,q, j) = T(4,3,p,q,j) = prime(j)^2 -2, T(n,1,p,q,j) = T(n,n,p,q,j) = 2 and (p, q, j) = (0,1,3).
Sum_{k=0..n} T(n,k,0,1,3) = 4*(-5)^n*[n<2] + 50*(i*sqrt(5))^(n-2)*(ChebyshevU(n-2, -i/sqrt(5)) - (3*i/sqrt(5))*ChebyshevU(n-3, -i/sqrt(5))) = 4*(-5)^n*[n<2] + 50*A123011(n-2). (End)

Extensions

More terms from R. J. Mathar, Jan 22 2009
Edited by G. C. Greubel, Mar 04 2021

A153520 Triangle T(n,k) = T(n-1, k) + T(n-1, k-1) + 7*T(n-2, k-1), read by rows.

Original entry on oeis.org

2, 7, 7, 2, 94, 2, 2, 341, 341, 2, 2, 357, 1340, 357, 2, 2, 373, 4084, 4084, 373, 2, 2, 389, 6956, 17548, 6956, 389, 2, 2, 405, 9956, 53092, 53092, 9956, 405, 2, 2, 421, 13084, 111740, 229020, 111740, 13084, 421, 2, 2, 437, 16340, 194516, 712404, 712404, 194516, 16340, 437, 2
Offset: 1

Views

Author

Roger L. Bagula, Dec 28 2008

Keywords

Examples

			Triangle begins as:
  2;
  7,   7;
  2,  94,     2;
  2, 341,   341,      2;
  2, 357,  1340,    357,      2;
  2, 373,  4084,   4084,    373,      2;
  2, 389,  6956,  17548,   6956,    389,      2;
  2, 405,  9956,  53092,  53092,   9956,    405,     2;
  2, 421, 13084, 111740, 229020, 111740,  13084,   421,   2;
  2, 437, 16340, 194516, 712404, 712404, 194516, 16340, 437, 2;
		

Crossrefs

Sequences with variable (p,q,j): A153516 (0,1,2), A153518 (0,1,3), this sequence (0,1,4), A153521 (0,1,5), A153648 (1,0,3), A153649 (1,1,4), A153650 (1,4,5), A153651 (1,5,6), A153652 (2,1,7), A153653 (2,1,8), A153654 (2,1,9), A153655 (2,1,10), A153656 (2,3,9), A153657 (2,7,10).

Programs

  • Magma
    f:= func< n,j | Round(((3-(-1)^n)/2)*NthPrime(j)^(n-1) - 2^((3-(-1)^n)/2)) >;
    function T(n,k,p,q,j)
      if n eq 2 then return NthPrime(j);
      elif (n eq 3 and k eq 2 or n eq 4 and k eq 2 or n eq 4 and k eq 3) then return f(n,j);
      elif (k eq 1 or k eq n) then return 2;
      else return T(n-1,k,p,q,j) + T(n-1,k-1,p,q,j) + (p*j+q)*NthPrime(j)*T(n-2,k-1,p,q,j);
      end if; return T;
    end function;
    [T(n,k,0,1,4): k in [1..n], n in [1..12]]; // G. C. Greubel, Mar 04 2021
  • Mathematica
    T[n_, k_, p_, q_, j_]:= T[n,k,p,q,j]= If[n==2, Prime[j], If[n==3 && k==2 || n==4 && 2<=k<=3, ((3-(-1)^n)/2)*Prime[j]^(n-1) -2^((3-(-1)^n)/2), If[k==1 || k==n, 2, T[n-1,k,p,q,j] + T[n-1,k-1,p,q,j] + (p*j+q)*Prime[j]*T[n-2,k-1,p,q,j] ]]];
    Table[T[n,k,0,1,4], {n,12}, {k,n}]//Flatten (* modified by G. C. Greubel, Mar 04 2021 *)
  • Sage
    @CachedFunction
    def f(n,j): return ((3-(-1)^n)/2)*nth_prime(j)^(n-1) - 2^((3-(-1)^n)/2)
    def T(n,k,p,q,j):
        if (n==2): return nth_prime(j)
        elif (n==3 and k==2 or n==4 and 2<=k<=3): return f(n,j)
        elif (k==1 or k==n): return 2
        else: return T(n-1,k,p,q,j) + T(n-1,k-1,p,q,j) + (p*j+q)*nth_prime(j)*T(n-2,k-1,p,q,j)
    flatten([[T(n,k,0,1,4) for k in (1..n)] for n in (1..12)]) # G. C. Greubel, Mar 04 2021
    

Formula

T(n,k) = T(n-1, k) + T(n-1, k-1) + 7*T(n-2, k-1).
From G. C. Greubel, Mar 04 2021: (Start)
T(n,k,p,q,j) = T(n-1,k,p,q,j) + T(n-1,k-1,p,q,j) + (p*j+q)*prime(j)*T(n-2,k-1,p,q,j) with T(2,k,p,q,j) = prime(j), T(3,2,p,q,j) = 2*prime(j)^2 -4, T(4,2,p,q,j) = T(4,3,p,q,j) = prime(j)^2 -2, T(n,1,p,q,j) = T(n,n,p,q,j) = 2 and (p,q,j) = (0,1,4).
Sum_{k=1..n} T(n,k,p,q,j) = 2*(prime(j)-3)*[n=1] -2*prime(j)*(prime(j)-3)*[n=2] +2*prime(j)^2*(i*sqrt(prime(j)))^(n-3)*(ChebyshevU(n-3, -i/Sqrt(prime(j))) -((prime(j) -2)*i/sqrt(prime(j)))*ChebyshevU(n-4, -i/sqrt(prime(j)))) for (p,q,j)=(0,1,4).
Row sums satisfy the recurrence relation S(n) = 2*S(n-1) + prime(j)*S(n-2), for n > 4, with S(1) = 2, S(2) = 2*prime(j), S(3) = 2*prime(j)^2, S(4) = 2*prime(j)^3 with j=4. (End)

Extensions

Edited by G. C. Greubel, Mar 04 2021

A153651 Triangle T(n, k) = T(n-1, k) + T(n-1, k-1) + (j+5)*prime(j)*T(n-2, k-1) with j=6, read by rows.

Original entry on oeis.org

2, 13, 13, 2, 334, 2, 2, 2195, 2195, 2, 2, 2483, 52152, 2483, 2, 2, 2771, 368520, 368520, 2771, 2, 2, 3059, 726360, 8194776, 726360, 3059, 2, 2, 3347, 1125672, 61619496, 61619496, 1125672, 3347, 2, 2, 3635, 1566456, 166614648, 1295091960, 166614648, 1566456, 3635, 2
Offset: 1

Views

Author

Roger L. Bagula, Dec 30 2008

Keywords

Examples

			Triangle begins as:
   2;
  13,   13;
   2,  334,       2;
   2, 2195,    2195,         2;
   2, 2483,   52152,      2483,          2;
   2, 2771,  368520,    368520,       2771,         2;
   2, 3059,  726360,   8194776,     726360,      3059,       2;
   2, 3347, 1125672,  61619496,   61619496,   1125672,    3347,    2;
   2, 3635, 1566456, 166614648, 1295091960, 166614648, 1566456, 3635, 2;
		

Crossrefs

Sequences with variable (p,q,j): A153516 (0,1,2), A153518 (0,1,3), A153520 (0,1,4), A153521 (0,1,5), A153648 (1,0,3), A153649 (1,1,4), A153650 (1,4,5), this sequence (1,5,6), A153652 (2,1,7), A153653 (2,1,8), A153654 (2,1,9), A153655 (2,1,10), A153656 (2,3,9), A153657 (2,7,10).
Cf. A001022 (powers of 13).

Programs

  • Magma
    f:= func< n,j | Round(((3-(-1)^n)/2)*NthPrime(j)^(n-1) - 2^((3-(-1)^n)/2)) >;
    function T(n,k,p,q,j)
      if n eq 2 then return NthPrime(j);
      elif (n eq 3 and k eq 2 or n eq 4 and k eq 2 or n eq 4 and k eq 3) then return f(n,j);
      elif (k eq 1 or k eq n) then return 2;
      else return T(n-1,k,p,q,j) + T(n-1,k-1,p,q,j) + (p*j+q)*NthPrime(j)*T(n-2,k-1,p,q,j);
      end if; return T;
    end function;
    [T(n,k,1,5,6): k in [1..n], n in [1..12]]; // G. C. Greubel, Mar 06 2021
  • Mathematica
    T[n_, k_, p_, q_, j_]:= T[n,k,p,q,j]= If[n==2, Prime[j], If[n==3 && k==2 || n==4 && 2<=k<=3, ((3-(-1)^n)/2)*Prime[j]^(n-1) -2^((3-(-1)^n)/2), If[k==1 || k==n, 2, T[n-1,k,p,q,j] + T[n-1,k-1,p,q,j] + (p*j+q)*Prime[j]*T[n-2,k-1,p,q,j] ]]];
    Table[T[n,k,1,5,6], {n,12}, {k,n}]//Flatten (* modified by G. C. Greubel, Mar 06 2021 *)
  • Sage
    @CachedFunction
    def f(n,j): return ((3-(-1)^n)/2)*nth_prime(j)^(n-1) - 2^((3-(-1)^n)/2)
    def T(n,k,p,q,j):
        if (n==2): return nth_prime(j)
        elif (n==3 and k==2 or n==4 and 2<=k<=3): return f(n,j)
        elif (k==1 or k==n): return 2
        else: return T(n-1,k,p,q,j) + T(n-1,k-1,p,q,j) + (p*j+q)*nth_prime(j)*T(n-2,k-1,p,q,j)
    flatten([[T(n,k,1,5,6) for k in (1..n)] for n in (1..12)]) # G. C. Greubel, Mar 06 2021
    

Formula

T(n, k) = T(n-1, k) + T(n-1, k-1) + (j+5)*prime(j)*T(n-2, k-1) with j=6.
From G. C. Greubel, Mar 06 2021: (Start)
T(n,k,p,q,j) = T(n-1,k,p,q,j) + T(n-1,k-1,p,q,j) + (p*j+q)*prime(j)*T(n-2,k-1,p,q,j) with T(2,k,p,q,j) = prime(j), T(3,2,p,q,j) = 2*prime(j)^2 -4, T(4,2,p,q,j) = T(4,3,p,q,j) = prime(j)^2 -2, T(n,1,p,q,j) = T(n,n,p,q,j) = 2 and (p,q,j) = (1,5,6).
Sum_{k=0..n} T(n,k,p,q,j) = 2*prime(j)^(n-1) for j=6, = 2*A001022(n-1). (End)

Extensions

Edited by G. C. Greubel, Mar 06 2021

A153652 Triangle T(n, k, j) = T(n-1, k, j) + T(n-1, k-1, j) + (2*j + 1)*prime(j)*T(n-2, k-1, j) with T(2, k, j) = prime(j) and j = 7, read by rows.

Original entry on oeis.org

2, 17, 17, 2, 574, 2, 2, 4911, 4911, 2, 2, 5423, 156192, 5423, 2, 2, 5935, 1413920, 1413920, 5935, 2, 2, 6447, 2802720, 42656800, 2802720, 6447, 2, 2, 6959, 4322592, 406009120, 406009120, 4322592, 6959, 2, 2, 7471, 5973536, 1125025312, 11689502240, 1125025312, 5973536, 7471, 2
Offset: 1

Views

Author

Roger L. Bagula, Dec 30 2008

Keywords

Examples

			Triangle begins as:
   2;
  17,   17;
   2,  574,       2;
   2, 4911,    4911,          2;
   2, 5423,  156192,       5423,           2;
   2, 5935, 1413920,    1413920,        5935,          2;
   2, 6447, 2802720,   42656800,     2802720,       6447,       2;
   2, 6959, 4322592,  406009120,   406009120,    4322592,    6959,    2;
   2, 7471, 5973536, 1125025312, 11689502240, 1125025312, 5973536, 7471, 2;
		

Crossrefs

Cf. this sequence (j=7), A153653 (j=8), A153654 (j=9), A153655 (j=10).
Cf. A001026 (powers of 17).

Programs

  • Magma
    f:= func< n,j | Round(((3-(-1)^n)/2)*NthPrime(j)^(n-1) - 2^((3-(-1)^n)/2)) >;
    function T(n,k,j)
      if n eq 2 then return NthPrime(j);
      elif (n eq 3 and k eq 2 or n eq 4 and k eq 2 or n eq 4 and k eq 3) then return f(n,j);
      elif (k eq 1 or k eq n) then return 2;
      else return T(n-1,k,j) + T(n-1,k-1,j) + (2*j+1)*NthPrime(j)*T(n-2,k-1,j);
      end if; return T;
    end function;
    [T(n,k,7): k in [1..n], n in [1..12]]; // G. C. Greubel, Mar 02 2021
  • Mathematica
    T[n_, k_, j_]:= T[n,k,j]= If[n==2, Prime[j], If[n==3 && k==2 || n==4 && 2<=k<=3, ((3-(-1)^n)/2)*Prime[j]^(n-1) -2^((3-(-1)^n)/2), If[k==1 || k==n, 2, T[n-1,k,j] + T[n-1,k-1,j] + (2*j+1)*Prime[j]*T[n-2,k-1,j] ]]];
    Table[T[n,k,7], {n,12}, {k,n}]//Flatten (* modified by G. C. Greubel, Mar 02 2021 *)
  • Sage
    @CachedFunction
    def f(n,j): return ((3-(-1)^n)/2)*nth_prime(j)^(n-1) - 2^((3-(-1)^n)/2)
    def T(n,k,j):
        if (n==2): return nth_prime(j)
        elif (n==3 and k==2 or n==4 and 2<=k<=3): return f(n,j)
        elif (k==1 or k==n): return 2
        else: return T(n-1,k,j) + T(n-1,k-1,j) + (2*j+1)*nth_prime(j)*T(n-2,k-1,j)
    flatten([[T(n,k,7) for k in (1..n)] for n in (1..12)]) # G. C. Greubel, Mar 02 2021
    

Formula

T(n, k, j) = T(n-1, k, j) + T(n-1, k-1, j) + (2*j + 1)*prime(j)*T(n-2, k-1, j) with T(2, k, j) = prime(j), T(3, 2, j) = 2*prime(j)^2 - 4, T(4, 2, j) = T(4, 3, j) = prime(j)^2 - 2, T(n, 1, j) = T(n, n, j) = 2 and j = 7.
Sum_{k=0..n} T(n, k, j) = 2*prime(j)^(n-1) for j=7 = 2*A001026(n-1).

Extensions

Edited by G. C. Greubel, Mar 02 2021

A153653 Triangle T(n, k, j) = T(n-1, k, j) + T(n-1, k-1, j) + (2*j + 1)*prime(j)*T(n-2, k-1, j) with T(2, k, j) = prime(j) and j = 8, read by rows.

Original entry on oeis.org

2, 19, 19, 2, 718, 2, 2, 6857, 6857, 2, 2, 7505, 245628, 7505, 2, 2, 8153, 2467944, 2467944, 8153, 2, 2, 8801, 4900212, 84273732, 4900212, 8801, 2, 2, 9449, 7542432, 886319856, 886319856, 7542432, 9449, 2, 2, 10097, 10394604, 2476630764, 28993055148, 2476630764, 10394604, 10097, 2
Offset: 1

Views

Author

Roger L. Bagula, Dec 30 2008

Keywords

Examples

			Triangle begins as:
   2;
  19,    19;
   2,   718,        2;
   2,  6857,     6857,          2;
   2,  7505,   245628,       7505,           2;
   2,  8153,  2467944,    2467944,        8153,          2;
   2,  8801,  4900212,   84273732,     4900212,       8801,        2;
   2,  9449,  7542432,  886319856,   886319856,    7542432,     9449,     2;
   2, 10097, 10394604, 2476630764, 28993055148, 2476630764, 10394604, 10097, 2;
		

Crossrefs

Cf. A153652 (j=7), this sequence (j=8), A153654 (j=9), A153655 (j=10).
Cf. A001029 (powers of 19).

Programs

  • Magma
    f:= func< n,j | Round(((3-(-1)^n)/2)*NthPrime(j)^(n-1) - 2^((3-(-1)^n)/2)) >;
    function T(n,k,j)
      if n eq 2 then return NthPrime(j);
      elif (n eq 3 and k eq 2 or n eq 4 and k eq 2 or n eq 4 and k eq 3) then return f(n,j);
      elif (k eq 1 or k eq n) then return 2;
      else return T(n-1,k,j) + T(n-1,k-1,j) + (2*j+1)*NthPrime(j)*T(n-2,k-1,j);
      end if; return T;
    end function;
    [T(n,k,8): k in [1..n], n in [1..12]]; // G. C. Greubel, Mar 03 2021
  • Mathematica
    T[n_, k_, j_]:= T[n,k,j]= If[n==2, Prime[j], If[n==3 && k==2 || n==4 && 2<=k<=3, ((3-(-1)^n)/2)*Prime[j]^(n-1) -2^((3-(-1)^n)/2), If[k==1 || k==n, 2, T[n-1,k,j] + T[n-1,k-1,j] + (2*j+1)*Prime[j]*T[n-2,k-1,j] ]]];
    Table[T[n,k,8], {n,12}, {k,n}]//Flatten (* modified by G. C. Greubel, Mar 03 2021 *)
  • Sage
    @CachedFunction
    def f(n,j): return ((3-(-1)^n)/2)*nth_prime(j)^(n-1) - 2^((3-(-1)^n)/2)
    def T(n,k,j):
        if (n==2): return nth_prime(j)
        elif (n==3 and k==2 or n==4 and 2<=k<=3): return f(n,j)
        elif (k==1 or k==n): return 2
        else: return T(n-1,k,j) + T(n-1,k-1,j) + (2*j+1)*nth_prime(j)*T(n-2,k-1,j)
    flatten([[T(n,k,8) for k in (1..n)] for n in (1..12)]) # G. C. Greubel, Mar 03 2021
    

Formula

T(n, k, j) = T(n-1, k, j) + T(n-1, k-1, j) + (2*j + 1)*prime(j)*T(n-2, k-1, j) with T(2, k, j) = prime(j), T(3, 2, j) = 2*prime(j)^2 - 4, T(4, 2, j) = T(4, 3, j) = prime(j)^2 - 2, T(n, 1, j) = T(n, n, j) = 2 and j = 8.
Sum_{k=0..n} T(n, k, j) = 2*prime(j)^(n-1) for j=8 = 2*A001029(n-1).

Extensions

Edited by G. C. Greubel, Mar 03 2021

A153654 Triangle T(n, k, j) = T(n-1, k, j) + T(n-1, k-1, j) + (2*j + 1)*prime(j)*T(n-2, k-1, j) with T(2, k, j) = prime(j) and j = 9, read by rows.

Original entry on oeis.org

2, 23, 23, 2, 1054, 2, 2, 12165, 12165, 2, 2, 13041, 484928, 13041, 2, 2, 13917, 5814074, 5814074, 13917, 2, 2, 14793, 11526908, 223541684, 11526908, 14793, 2, 2, 15669, 17623430, 2775818930, 2775818930, 17623430, 15669, 2, 2, 16545, 24103640, 7830701156, 103239353768, 7830701156, 24103640, 16545, 2
Offset: 1

Views

Author

Roger L. Bagula, Dec 30 2008

Keywords

Examples

			Triangle begins as:
   2;
  23,    23;
   2,  1054,        2;
   2, 12165,    12165,          2;
   2, 13041,   484928,      13041,            2;
   2, 13917,  5814074,    5814074,        13917,          2;
   2, 14793, 11526908,  223541684,     11526908,      14793,        2;
   2, 15669, 17623430, 2775818930,   2775818930,   17623430,    15669,     2;
   2, 16545, 24103640, 7830701156, 103239353768, 7830701156, 24103640, 16545, 2;
		

Crossrefs

Cf. A153652 (j=7), A153653 (j=8), this sequence (j=9), A153655 (j=10).

Programs

  • Magma
    f:= func< n,j | Round(((3-(-1)^n)/2)*NthPrime(j)^(n-1) - 2^((3-(-1)^n)/2)) >;
    function T(n,k,j)
      if n eq 2 then return NthPrime(j);
      elif (n eq 3 and k eq 2 or n eq 4 and k eq 2 or n eq 4 and k eq 3) then return f(n,j);
      elif (k eq 1 or k eq n) then return 2;
      else return T(n-1,k,j) + T(n-1,k-1,j) + (2*j+1)*NthPrime(j)*T(n-2,k-1,j);
      end if; return T;
    end function;
    [T(n,k,9): k in [1..n], n in [1..12]]; // G. C. Greubel, Mar 03 2021
  • Mathematica
    T[n_, k_, j_]:= T[n,k,j]= If[n==2, Prime[j], If[n==3 && k==2 || n==4 && 2<=k<=3, ((3-(-1)^n)/2)*Prime[j]^(n-1) -2^((3-(-1)^n)/2), If[k==1 || k==n, 2, T[n-1,k,j] + T[n-1,k-1,j] + (2*j+1)*Prime[j]*T[n-2,k-1,j] ]]];
    Table[T[n,k,9], {n,12}, {k,n}]//Flatten (* modified by G. C. Greubel, Mar 03 2021 *)
  • Sage
    @CachedFunction
    def f(n,j): return ((3-(-1)^n)/2)*nth_prime(j)^(n-1) - 2^((3-(-1)^n)/2)
    def T(n,k,j):
        if (n==2): return nth_prime(j)
        elif (n==3 and k==2 or n==4 and 2<=k<=3): return f(n,j)
        elif (k==1 or k==n): return 2
        else: return T(n-1,k,j) + T(n-1,k-1,j) + (2*j+1)*nth_prime(j)*T(n-2,k-1,j)
    flatten([[T(n,k,9) for k in (1..n)] for n in (1..12)]) # G. C. Greubel, Mar 03 2021
    

Formula

T(n, k, j) = T(n-1, k, j) + T(n-1, k-1, j) + (2*j + 1)*prime(j)*T(n-2, k-1, j) with T(2, k, j) = prime(j), T(3, 2, j) = 2*prime(j)^2 - 4, T(4, 2, j) = T(4, 3, j) = prime(j)^2 - 2, T(n, 1, j) = T(n, n, j) = 2 and j = 9.
From G. C. Greubel, Mar 04 2021: (Start)
Sum_{k=0..n} T(n, k, 10) = -(68/361)*[n=0] - (92/19)*[n=1] + 1058*(i*sqrt(437))^(n-2)*(ChebyshevU(n-2, -i/sqrt(437)) - (21*i/sqrt(437))*ChebyshevU(n-3, -i/sqrt(437) )).
Row sums satisfy the recurrence S(n) = 2*S(n-1) + 437*S(n-2) for n>4 with S(0) = 2, S(1) = 46, S(2) = 1058, S(3) = 24334. (End)

Extensions

Edited by G. C. Greubel, Mar 03 2021

A153655 Triangle T(n, k, j) = T(n-1, k, j) + T(n-1, k-1, j) + (2*j + 1)*prime(j)*T(n-2, k-1, j) with T(2, k, j) = prime(j) and j = 10, read by rows.

Original entry on oeis.org

2, 29, 29, 2, 1678, 2, 2, 24387, 24387, 2, 2, 25607, 1070676, 25607, 2, 2, 26827, 15947966, 15947966, 26827, 2, 2, 28047, 31569456, 683937616, 31569456, 28047, 2, 2, 29267, 47935146, 10427818366, 10427818366, 47935146, 29267, 2, 2, 30487, 65045036, 29701552216, 437373644876, 29701552216, 65045036, 30487, 2
Offset: 1

Views

Author

Roger L. Bagula, Dec 30 2008

Keywords

Examples

			Triangle begins as:
   2;
  29,    29;
   2,  1678,        2;
   2, 24387,    24387,           2;
   2, 25607,  1070676,       25607,            2;
   2, 26827, 15947966,    15947966,        26827,           2;
   2, 28047, 31569456,   683937616,     31569456,       28047,        2;
   2, 29267, 47935146, 10427818366,  10427818366,    47935146,    29267,     2;
   2, 30487, 65045036, 29701552216, 437373644876, 29701552216, 65045036, 30487, 2;
		

Crossrefs

Cf. A153652 (j=7), A153653 (j=8), A153654 (j=9), this sequence (j=10).

Programs

  • Magma
    f:= func< n,j | Round(((3-(-1)^n)/2)*NthPrime(j)^(n-1) - 2^((3-(-1)^n)/2)) >;
    function T(n,k,j)
      if n eq 2 then return NthPrime(j);
      elif (n eq 3 and k eq 2 or n eq 4 and k eq 2 or n eq 4 and k eq 3) then return f(n,j);
      elif (k eq 1 or k eq n) then return 2;
      else return T(n-1,k,j) + T(n-1,k-1,j) + (2*j+1)*NthPrime(j)*T(n-2,k-1,j);
      end if; return T;
    end function;
    [T(n,k,10): k in [1..n], n in [1..12]]; // G. C. Greubel, Mar 03 2021
  • Mathematica
    T[n_, k_, j_]:= T[n,k,j]= If[n==2, Prime[j], If[n==3 && k==2 || n==4 && 2<=k<=3, ((3-(-1)^n)/2)*Prime[j]^(n-1) -2^((3-(-1)^n)/2), If[k==1 || k==n, 2, T[n-1,k,j] + T[n-1,k-1,j] + (2*j+1)*Prime[j]*T[n-2,k-1,j] ]]];
    Table[T[n,k,10], {n,12}, {k,n}]//Flatten (* modified by G. C. Greubel, Mar 03 2021 *)
  • Sage
    @CachedFunction
    def f(n,j): return ((3-(-1)^n)/2)*nth_prime(j)^(n-1) - 2^((3-(-1)^n)/2)
    def T(n,k,j):
        if (n==2): return nth_prime(j)
        elif (n==3 and k==2 or n==4 and 2<=k<=3): return f(n,j)
        elif (k==1 or k==n): return 2
        else: return T(n-1,k,j) + T(n-1,k-1,j) + (2*j+1)*nth_prime(j)*T(n-2,k-1,j)
    flatten([[T(n,k,10) for k in (1..n)] for n in (1..12)]) # G. C. Greubel, Mar 03 2021
    

Formula

T(n, k, j) = T(n-1, k, j) + T(n-1, k-1, j) + (2*j + 1)*prime(j)*T(n-2, k-1, j) with T(2, k, j) = prime(j), T(3, 2, j) = 2*prime(j)^2 - 4, T(4, 2, j) = T(4, 3, j) = prime(j)^2 - 2, T(n, 1, j) = T(n, n, j) = 2 and j = 10.
From G. C. Greubel, Mar 04 2021: (Start)
Sum_{k=0..n} T(n, k, 10) = -(76/147)*[n=0] - (116/7)*[n=1] + 1682*(i*sqrt(609))^(n-2)*(ChebyshevU(n-2, -i/sqrt(609)) - (27*i/sqrt(609))*ChebyshevU(n-3, -i/sqrt(609) )).
Row sums satisfy the recurrence S(n) = 2*S(n-1) + 609*S(n-2) for n>4 with S(0) = 2, S(1) = 58, S(2) = 1682, S(3) = 48778. (End)

Extensions

Edited by G. C. Greubel, Mar 03 2021

A153656 Triangle T(n, k) = T(n-1, k) + T(n-1, k-1) + (2*j +3)*prime(j)*T(n-2, k-1) with j=9, read by rows.

Original entry on oeis.org

2, 23, 23, 2, 1054, 2, 2, 12165, 12165, 2, 2, 13133, 533412, 13133, 2, 2, 14101, 6422240, 6422240, 14101, 2, 2, 15069, 12779580, 270482476, 12779580, 15069, 2, 2, 16037, 19605432, 3385203976, 3385203976, 19605432, 16037, 2, 2, 17005, 26899796, 9577346548, 137413443860, 9577346548, 26899796, 17005, 2
Offset: 1

Views

Author

Roger L. Bagula, Dec 30 2008

Keywords

Examples

			Triangle begins as:
   2;
  23,    23;
   2,  1054,        2;
   2, 12165,    12165,          2;
   2, 13133,   533412,      13133,            2;
   2, 14101,  6422240,    6422240,        14101,          2;
   2, 15069, 12779580,  270482476,     12779580,      15069,        2;
   2, 16037, 19605432, 3385203976,   3385203976,   19605432,    16037,     2;
   2, 17005, 26899796, 9577346548, 137413443860, 9577346548, 26899796, 17005, 2;
		

Crossrefs

Sequences with variable (p,q,j): A153516 (0,1,2), A153518 (0,1,3), A153520 (0,1,4), A153521 (0,1,5), A153648 (1,0,3), A153649 (1,1,4), A153650 (1,4,5), A153651 (1,5,6), A153652 (2,1,7), A153653 (2,1,8), A153654 (2,1,9), A153655 (2,1,10), this sequence (2,3,9), A153657 (2,7,10).
Cf. A009967 (powers of 23).

Programs

  • Magma
    f:= func< n,j | Round(((3-(-1)^n)/2)*NthPrime(j)^(n-1) - 2^((3-(-1)^n)/2)) >;
    function T(n,k,p,q,j)
      if n eq 2 then return NthPrime(j);
      elif (n eq 3 and k eq 2 or n eq 4 and k eq 2 or n eq 4 and k eq 3) then return f(n,j);
      elif (k eq 1 or k eq n) then return 2;
      else return T(n-1,k,p,q,j) + T(n-1,k-1,p,q,j) + (p*j+q)*NthPrime(j)*T(n-2,k-1,p,q,j);
      end if; return T;
    end function;
    [T(n,k,2,3,9): k in [1..n], n in [1..12]]; // G. C. Greubel, Mar 06 2021
  • Mathematica
    T[n_, k_, p_, q_, j_]:= T[n,k,p,q,j]= If[n==2, Prime[j], If[n==3 && k==2 || n==4 && 2<=k<=3, ((3-(-1)^n)/2)*Prime[j]^(n-1) -2^((3-(-1)^n)/2), If[k==1 || k==n, 2, T[n-1,k,p,q,j] + T[n-1,k-1,p,q,j] + (p*j+q)*Prime[j]*T[n-2,k-1,p,q,j] ]]];
    Table[T[n,k,2,3,9], {n,12}, {k,n}]//Flatten (* modified by G. C. Greubel, Mar 06 2021 *)
  • Sage
    @CachedFunction
    def f(n,j): return ((3-(-1)^n)/2)*nth_prime(j)^(n-1) - 2^((3-(-1)^n)/2)
    def T(n,k,p,q,j):
        if (n==2): return nth_prime(j)
        elif (n==3 and k==2 or n==4 and 2<=k<=3): return f(n,j)
        elif (k==1 or k==n): return 2
        else: return T(n-1,k,p,q,j) + T(n-1,k-1,p,q,j) + (p*j+q)*nth_prime(j)*T(n-2,k-1,p,q,j)
    flatten([[T(n,k,2,3,9) for k in (1..n)] for n in (1..12)]) # G. C. Greubel, Mar 06 2021
    

Formula

T(n, k) = T(n-1, k) + T(n-1, k-1) + (2*j +3)*prime(j)*T(n-2, k-1) with j=9.
From G. C. Greubel, Mar 06 2021: (Start)
T(n,k,p,q,j) = T(n-1,k,p,q,j) + T(n-1,k-1,p,q,j) + (p*j+q)*prime(j)*T(n-2,k-1,p,q,j) with T(2,k,p,q,j) = prime(j), T(3,2,p,q,j) = 2*prime(j)^2 -4, T(4,2,p,q,j) = T(4,3,p,q,j) = prime(j)^2 -2, T(n,1,p,q,j) = T(n,n,p,q,j) = 2 and (p,q,j) = (2,3,9).
Sum_{k=0..n} T(n,k,p,q,j) = 2*prime(j)^(n-1), for (p,q,j)=(2,3,9), = 2*A009967(n-1). (End)

Extensions

Edited by G. C. Greubel, Mar 06 2021

A153657 Triangle T(n, k) = T(n-1, k) + T(n-1, k-1) + (2*j +7)*prime(j)*T(n-2, k-1) with j=10, read by rows.

Original entry on oeis.org

2, 29, 29, 2, 1678, 2, 2, 24387, 24387, 2, 2, 25955, 1362648, 25955, 2, 2, 27523, 20483624, 20483624, 27523, 2, 2, 29091, 40833912, 1107920632, 40833912, 29091, 2, 2, 30659, 62413512, 17187432136, 17187432136, 62413512, 30659, 2, 2, 32227, 85222424, 49222798744, 901876719128, 49222798744, 85222424, 32227, 2
Offset: 1

Views

Author

Roger L. Bagula, Dec 30 2008

Keywords

Examples

			Triangle begins as:
   2;
  29,    29;
   2,  1678,        2;
   2, 24387,    24387,           2;
   2, 25955,  1362648,       25955,            2;
   2, 27523, 20483624,    20483624,        27523,           2;
   2, 29091, 40833912,  1107920632,     40833912,       29091,       2;
   2, 30659, 62413512, 17187432136,  17187432136,    62413512,    30659,     2;
   2, 32227, 85222424, 49222798744, 901876719128, 49222798744, 85222424, 32227, 2;
		

Crossrefs

Sequences with variable (p,q,j): A153516 (0,1,2), A153518 (0,1,3), A153520 (0,1,4), A153521 (0,1,5), A153648 (1,0,3), A153649 (1,1,4), A153650 (1,4,5), A153651 (1,5,6), A153652 (2,1,7), A153653 (2,1,8), A153654 (2,1,9), A153655 (2,1,10), A153656 (2,3,9), this sequence (2,7,10).
Cf. A009973 (powers of 29).

Programs

  • Magma
    f:= func< n,j | Round(((3-(-1)^n)/2)*NthPrime(j)^(n-1) - 2^((3-(-1)^n)/2)) >;
    function T(n,k,p,q,j)
      if n eq 2 then return NthPrime(j);
      elif (n eq 3 and k eq 2 or n eq 4 and k eq 2 or n eq 4 and k eq 3) then return f(n,j);
      elif (k eq 1 or k eq n) then return 2;
      else return T(n-1,k,p,q,j) + T(n-1,k-1,p,q,j) + (p*j+q)*NthPrime(j)*T(n-2,k-1,p,q,j);
      end if; return T;
    end function;
    [T(n,k,2,7,10): k in [1..n], n in [1..12]]; // G. C. Greubel, Mar 06 2021
  • Mathematica
    T[n_, k_, p_, q_, j_]:= T[n,k,p,q,j]= If[n==2, Prime[j], If[n==3 && k==2 || n==4 && 2<=k<=3, ((3-(-1)^n)/2)*Prime[j]^(n-1) -2^((3-(-1)^n)/2), If[k==1 || k==n, 2, T[n-1,k,p,q,j] + T[n-1,k-1,p,q,j] + (p*j+q)*Prime[j]*T[n-2,k-1,p,q,j] ]]];
    Table[T[n,k,2,7,10], {n,12}, {k,n}]//Flatten (* modified by G. C. Greubel, Mar 06 2021 *)
  • Sage
    @CachedFunction
    def f(n,j): return ((3-(-1)^n)/2)*nth_prime(j)^(n-1) - 2^((3-(-1)^n)/2)
    def T(n,k,p,q,j):
        if (n==2): return nth_prime(j)
        elif (n==3 and k==2 or n==4 and 2<=k<=3): return f(n,j)
        elif (k==1 or k==n): return 2
        else: return T(n-1,k,2,7,10) + T(n-1,k-1,p,q,j) + (p*j+q)*nth_prime(j)*T(n-2,k-1,p,q,j)
    flatten([[T(n,k,p,q,j) for k in (1..n)] for n in (1..12)]) # G. C. Greubel, Mar 06 2021
    

Formula

T(n, k) = T(n-1, k) + T(n-1, k-1) + (2*j +7)*prime(j)*T(n-2, k-1) with j=10.
From G. C. Greubel, Mar 06 2021: (Start)
T(n,k,p,q,j) = T(n-1,k,p,q,j) + T(n-1,k-1,p,q,j) + (p*j+q)*prime(j)*T(n-2,k-1,p,q,j) with T(2,k,p,q,j) = prime(j), T(3,2,p,q,j) = 2*prime(j)^2 -4, T(4,2,p,q,j) = T(4,3,p,q,j) = prime(j)^2 -2, T(n,1,p,q,j) = T(n,n,p,q,j) = 2 and (p,q,j) = (2,7,10).
Sum_{k=0..n} T(n,k,p,q,j) = 2*prime(j)^(n-1), for (p,q,j)=(2,7,10), = 2*A009973(n-1). (End)

Extensions

Edited by G. C. Greubel, Mar 06 2021

A168491 a(n) = (-1)^n*Catalan(n).

Original entry on oeis.org

1, -1, 2, -5, 14, -42, 132, -429, 1430, -4862, 16796, -58786, 208012, -742900, 2674440, -9694845, 35357670, -129644790, 477638700, -1767263190, 6564120420, -24466267020, 91482563640, -343059613650, 1289904147324, -4861946401452, 18367353072152, -69533550916004
Offset: 0

Views

Author

Philippe Deléham, Nov 27 2009

Keywords

Comments

Second inverse binomial transform of A001405. Hankel transform of this sequence gives A000012 = [1,1,1,1,1,1,1,...].
Also the expansion of real root of y+y^2=x, With offset 1, series reversion of x+x^2. - Robert G. Wilson v, Mar 07 2011

Examples

			G.f. = 1 - x + 2*x^2 - 5*x^3 + 14*x^4 - 42*x^5 + 132*x^6 - 429*x^7 + ...
		

Programs

  • Magma
    [(-1)^n*Catalan(n): n in [0..40]]; // Vincenzo Librandi, Nov 16 2014
  • Mathematica
    CoefficientList[InverseSeries[Series[y + y^2, {y, 0, 28}], x]/x, x] (* Robert G. Wilson v, Mar 07 2011 *)
    a[ n_] := If[ n < 0, 0, (-1)^n CatalanNumber[n]]; (* Michael Somos, Nov 22 2014 *)
    Table[(-1)^n*CatalanNumber[n], {n, 0, 50}] (* G. C. Greubel, Jul 23 2016 *)
    Times@@@Partition[Riffle[CatalanNumber[Range[0,30]],{1,-1},{2,-1,2}],2] (* Harvey P. Dale, Dec 19 2022 *)
  • PARI
    a(n)=(-1)^n*binomial(2*n,n)/(n+1); \\ Joerg Arndt, May 15 2013
    

Formula

a(n) = (-1)^n * A000108(n).
G.f.: (sqrt(1+4*x) - 1) / (2*x) = 2 / (sqrt(1+4*x) + 1).
E.g.f.: exp(-2*x)*(BesselI(0, 2*x) + BesselI(1, 2*x)). - Peter Luschny, Aug 26 2012
D-finite with recurrence (n+1)*a(n) +2*(2*n - 1)*a(n-1) = 0. - R. J. Mathar, Oct 06 2012
G.f.: 1 / (1 + x / (1 + x / (1 + x / ...))). - Michael Somos, Jan 03 2013
G.f.: 1/(x*Q(0)) - 1/x, where Q(k)= 1 - (4*k+1)*x/(k+1 - x*(2*k+2)*(4*k+3)/(2*x*(4*k+3) - (2*k+3)/Q(k+1))); (continued fraction). - Sergei N. Gladkovskii, May 15 2013
G.f.: G(0)/(2*x) - 1/(2*x), where G(k)= 1 + 4*x*(4*k+1)/( (4*k+2)*(1+4*x) - 2*x*(1+4*x)*(2*k+1)*(4*k+3)/(x*(4*k+3) + (1+4*x)*(k+1)/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, Jun 24 2013
G.f.: G(0)/x - 1/x, where G(k)= k+1 - 2*x*(2*k+1) + 2*x*(k+1)*(2*k+3)/G(k+1) ; (continued fraction). - Sergei N. Gladkovskii, Jul 14 2013
Previous Showing 61-70 of 3244 results. Next