cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: , s

, s's wiki page.

, s has authored 661 sequences. Here are the ten most recent ones:

A387291 Integers x such that there exist two numbers y,z with x <= y <= z such that psi(x) = psi(y) = psi(z) = (x + y + z)/2.

Original entry on oeis.org

6, 8, 16, 18, 28, 32, 44, 54, 64, 70, 105, 110, 128, 150, 162, 165, 182, 200, 238, 240, 256, 280, 310, 315, 364, 382, 468, 486, 512, 520, 585, 590, 644, 735, 750, 780, 790, 795, 800, 1000, 1024, 1034, 1162, 1246, 1260, 1274, 1410, 1434, 1456, 1458, 1472, 1540, 1575
Offset: 1

Author

S. I. Dimitrov, Aug 25 2025

Keywords

Comments

The numbers x, y and z form a psi-amicable triple.

Examples

			28 is in the sequence since psi(28) = psi(33) = psi(35) = 48 = (28 + 33 + 35)/2.
		

Crossrefs

A383938 a(n) is the least positive integer k such that b(2*j) is prime for 1 <= j <= n but not prime for j = n+1, where b(1) = k and b(m+1) = b(m) + prime(m) for m >= 1.

Original entry on oeis.org

2, 5, 21, 129, 69, 1, 51, 23991, 171, 1371, 3, 322141431, 1431357020859
Offset: 0

Author

Om S. M. Yadav, Aug 18 2025

Keywords

Comments

Similar to A227547, primes are added in successive manner except that here the sequence breaks if an even-indexed term is not prime and considers preceding even-indexed prime as the last term of the sequence. For example, a(2) = 21 [21, 23, 26, 31, 38, 49] but since 49 is not prime, last two terms (38 and 49) are omitted leaving 31 as last term in the sequence.
a(12) is the last term, because b(j) is always divisible by 11 for some j in {2, 4, 6, 8, 10, 14, 16, 18, 22, 24, 26}. - Pontus von Brömssen, Aug 19 2025

Examples

			a(n) = k, b(m+1) = b(m) + prime(m); b(1) = k
For n = 0, a(0) = 2; b(m+1) = b(m) + prime(m): [2]
For n = 1, a(1) = 5; b(m+1) = b(m) + prime(m): [5, 7(5+2)]
For n = 2, a(2) = 21; b(m+1) = b(m) + prime(m): [21, 23(21+2), 26(23+3), 31(26+5)]
For n = 3, a(3) = 129; b(m+1) = b(m) + prime(m): [129, 131(129+2), 134(131+3), 139(134+5), 146(139+7), 157(146+11)]
For n = 4, a(4) = 69; b(m+1) = b(m) + prime(m): [69, 71(69+2), 74(71+3), 79(74+5), 86(79+7), 97(86+11), 110(97+13), 127(110+17)]
For n = 5, a(5) = 1; b(m+1) = b(m) + prime(m): [1, 3(1+2), 6(3+3), 11(6+5), 18(11+7), 29(18+11), 42(29+13), 59(42+17), 78(59+19), 101(78+23)]
For a(n), even-indexed term is prime. e.g. for a(3) = 129 [129, 131, 134, 139, 146, 157], even indexed terms 131, 139, 157 are primes.
		

Crossrefs

Programs

  • PARI
    a(n) = my(vp=concat(2, vector(n+1, i, sum(k=1, 2*i+1, prime(k)))), v=concat(vector(n, i, 1), 0), k=1); while (apply(ispseudoprime, vector(n+1, i, vp[i]+k)) != v, k++); k; \\ Michel Marcus, Aug 19 2025

Extensions

a(11) from Michel Marcus, Aug 19 2025
a(12) from Pontus von Brömssen, Aug 19 2025

A387199 Numbers which are not themselves palindromes, but a single swap of two digits creates a palindrome.

Original entry on oeis.org

110, 112, 113, 114, 115, 116, 117, 118, 119, 122, 133, 144, 155, 166, 177, 188, 199, 211, 220, 221, 223, 224, 225, 226, 227, 228, 229, 233, 244, 255, 266, 277, 288, 299, 311, 322, 330, 331, 332, 334, 335, 336, 337, 338, 339, 344, 355, 366, 377, 388, 399, 411, 422
Offset: 1

Author

James S. DeArmon, Aug 21 2025

Keywords

Comments

Might be called "single-transposition palindromes".
Leading zeros are not allowed in either the initial number or the resultant palindrome.

Examples

			110 is a term since a swap of the second and third digits yields the palindrome 101.
		

Crossrefs

Cf. A002113.

Programs

  • Python
    def pal(s): return s == s[::-1]
    def swaps(s): yield from (t for i in range(len(s)-1) for j in range(i+1, len(s)) if (t:=s[:i]+s[j]+s[i+1:j]+s[i]+s[j+1:])[0]!='0')
    def ok(n): return not pal(s:=str(n)) and any(pal(t) for t in swaps(s))
    print([k for k in range(425) if ok(k)]) # Michael S. Branicky, Aug 22 2025

Extensions

More terms from Michael S. Branicky, Aug 22 2025

A386933 Integers z such that there exist two integers 0

Original entry on oeis.org

81900, 161700, 163800, 175350, 245700, 261660, 323400, 327600, 350700, 409500, 485100, 490770, 491400, 499380, 523320, 526050, 526260, 573300, 646800, 647010, 655200, 671370, 701400, 702450, 737100, 784980, 808500, 819000, 876750, 970200, 971880, 981540, 982800, 990150, 998760
Offset: 1

Author

S. I. Dimitrov, Aug 09 2025

Keywords

Comments

The numbers x, y and z form a psi-amicable triple.

Examples

			163800 is in the sequence since psi(158340) = psi(161700) = psi(163800) = 564480 = 158340 + 161700 + 163800. Other examples: (322140, 322140, 323400), (14127960, 14224980, 14224980).
		

Crossrefs

A386901 Integers y such that there exist two integers 0

Original entry on oeis.org

80850, 158340, 161070, 161700, 232050, 242550, 316680, 322140, 323400, 404250, 464100, 474810, 475020, 483210, 485100, 485940, 565950, 633360, 641550, 644280, 646800, 662340, 696150, 727650, 791700, 805350, 808500, 963270, 966420, 967890, 970200, 971880
Offset: 1

Author

S. I. Dimitrov, Aug 07 2025

Keywords

Comments

The numbers x, y and z form a psi-amicable triple.

Examples

			158340 is in the sequence since psi(150150) = psi(158340) = psi(175350) = 483840 = 150150 + 158340 + 175350. Other examples: (232050, 232050, 261660), (7091700, 7098630, 7098630).
		

Crossrefs

A385852 Integers x such that there exist two integers 0

Original entry on oeis.org

79170, 150150, 158340, 161070, 232050, 237510, 300300, 316680, 322140, 395850, 450450, 464100, 468930, 474810, 475020, 483210, 554190, 570570, 600600, 622440, 633360, 641550, 644280, 696150, 712530, 750750, 791700, 805350, 937860, 949620, 950040, 963270, 966420
Offset: 1

Author

S. I. Dimitrov, Aug 07 2025

Keywords

Comments

The numbers x, y and z form a psi-amicable triple according to Dimitrov's definition.

Examples

			79170 is in the sequence since psi(79170) = psi(80850) = psi(81900) = 241920 = 79170 + 80850 + 81900. Other examples: (161070, 161070, 161700), (7063980, 7112490, 7112490).
		

Crossrefs

A386525 a(n) is the least k such that at least n terms of A063655 starting from index k are strictly decreasing.

Original entry on oeis.org

1, 5, 13, 37, 122, 3004, 26283, 53411, 109453, 4117156, 16831081
Offset: 1

Author

Richard S. Chang, Jul 24 2025

Keywords

Comments

Lai and Reinfeld conjecture that the sequence is infinite.

Examples

			The first 40 values of A063655 are: 2, 3, 4, 4, 6, 5, 8, 6, 6, 7, 12, 7, 14, 9, 8, 8, 18, 9, 20, 9, 10, 13, 24, 10, 10, 15, 12, 11, 30, 11, 32, 12, 14, 19, 12, 12, 38, 21, 16, and 13. Because the 37th term is the first of 4 strictly decreasing values and there is not previous occurrence of four decreasing values, a(3) = 37.
		

Crossrefs

Cf. A063655.

Extensions

a(11) from Sean A. Irvine, Aug 10 2025

A386964 a(1) = prime(1) = 2, a(n) = 10*a(n-1) + (prime(n) mod 10).

Original entry on oeis.org

2, 23, 235, 2357, 23571, 235713, 2357137, 23571379, 235713793, 2357137939, 23571379391, 235713793917, 2357137939171, 23571379391713, 235713793917137, 2357137939171373, 23571379391713739, 235713793917137391, 2357137939171373917, 23571379391713739171, 235713793917137391713
Offset: 1

Author

Michael S. Branicky, Aug 11 2025

Keywords

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember; `if`(n<1, 0, a(n-1)*10+irem(ithprime(n), 10)) end:
    seq(a(n), n=1..21);  # Alois P. Heinz, Aug 12 2025
  • Mathematica
    a[1]=2;a[n_]:=10a[n-1]+Mod[Prime[n],10];Array[a,21] (* James C. McMahon, Aug 12 2025 *)
  • Python
    from sympy import nextprime
    from itertools import islice
    def A386964(): # generator of terms
        an = pn = 2
        while True:
            yield an
            an = 10*an + (pn:=nextprime(pn))%10
    print(list(islice(A386964(), 21)))

Formula

a(n) = concatenation of A007652(1)..A007652(n).

A386727 Numbers x such that there exist three integers 0

Original entry on oeis.org

3, 10, 24, 51, 78, 105, 114, 136, 186, 220, 224, 255, 322, 348, 357, 370, 435, 478, 506, 616, 642, 710, 748, 820, 861, 885, 957, 996, 1004, 1068, 1113, 1214, 1221, 1276, 1292, 1336, 1390, 1485, 1491, 1562, 1564, 1581, 1605, 1660, 1670, 1704, 1716, 1724, 1815, 1869, 1880, 1912, 1947
Offset: 1

Author

S. I. Dimitrov, Jul 31 2025

Keywords

Comments

The numbers x, y, z and t form an amicable quadruple according to Yanney’s definition.

Examples

			114 is in the sequence since sigma(114) = sigma(158) = sigma(209) = sigma(239) = 240 = (114 + 158 + 209 + 239)/3.
		

Crossrefs

Programs

  • PARI
    isok(x1) = my(s=sigma(x1), vx=select(x->(x>=x1), invsigma(s)), v=vector(4, i, vx[1])); for (i=1, #vx, v[2] = vx[i]; for (j=1, #vx, v[3] = vx[j]; for (k=1, #vx, v[4] = vx[k]; if (vecsum(v) == 3*s, return(1));););); \\ Michel Marcus, Aug 01 2025

Extensions

More terms from Michel Marcus, Aug 01 2025

A386726 Numbers x such that there exist two integers 0

Original entry on oeis.org

2, 238, 280, 308, 310, 382, 790, 795, 920, 952, 1034, 1162, 1246, 1330, 1410, 1434, 2002, 2024, 2506, 2632, 2728, 2750, 2926, 3040, 3210, 3452, 3496, 3500, 3630, 4134, 4260, 4466, 4550, 4968, 5080, 5278, 5396, 5520, 5530, 5756, 6128, 6230, 6426, 6888, 7288, 7584, 7640, 7910, 7990
Offset: 1

Author

S. I. Dimitrov, Jul 31 2025

Keywords

Comments

The numbers x, y and z form an amicable triple according to Yanney's definition.

Examples

			238 is in the sequence since sigma(238) = sigma(255) = sigma(371) = 432 = (238 + 255 + 371)/2.
		

Crossrefs

Programs

  • PARI
    isok(x1) = my(s=sigma(x1), vx=select(x->(x>=x1), invsigma(s)), v=vector(3, i, vx[1])); for (i=1, #vx, v[2] = vx[i]; for (j=1, #vx, v[3] = vx[j]; if (vecsum(v) == 2*s, return(1)););); \\ Michel Marcus, Aug 01 2025

Extensions

More terms from Michel Marcus, Aug 01 2025