A387346 Big Ramsey degree (with respect to substructures) of an independent set of size n in a universal triangle-free graph.
1, 5, 161, 134397, 7980983689, 45921869097999781, 35268888847472944795910097, 4885777205485902177648027702583670093, 159271391109084147116751767705171032995283089412057, 1546604163029698823334234758731306633891622324147639816544352644405
Offset: 1
References
- M. Balko, D. Chodounský, N. Dobrinen, J. Hubička, M. Konečný, L. Vena, A. Zucker, Exact big Ramsey degrees for finitely constrained binary free amalgamation classes, Journal of the European Mathematical Society, 2024, published online first.
- N. Dobrinen, The Ramsey theory of the universal homogeneous triangle-free graph, Journal of Mathematical Logic, 20 (2020), 2050012.
- J. Hubička, Big Ramsey degrees using parameter spaces, Advances in Mathematics 478 (2025), 110386.
- J. Hubička, M. Konečný, Š. Vodseďálek, A. Zucker, Counting big Ramsey degrees of the homogeneous and universal K_4-free graph, arXiv:2505.22620, extended abstract accepted to Eurocomb 2025.
- A. S. Kechris, V. G. Pestov, S. Todorcevic, Fraïssé limits, Ramsey theory, and topological dynamics of automorphism groups, Geometric and Functional Analysis 15(1) (2005), 106-189.
- P. Komjáth and V. Rödl, Coloring of universal graphs, Graphs and Combinatorics 2(1) (1986) 55-60.
- N. Sauer, Edge partitions of the countable triangle free homogenous graph, Discrete Math. 185(1-3) (1998) 137-181.
- Š. Vodseďálek, Counting big Ramsey degrees, Bachelor's thesis, Charles University (2025).
- A. Zucker, On big Ramsey degrees for binary free amalgamation classes, Advances in Mathematics 408 (2022), 108585
Links
- M. Balko, D. Chodounský, N. Dobrinen, J. Hubička, M. Konečný, L. Vena, and A. Zucker, Characterisation of the big Ramsey degrees of the generic partial order, arXiv:2303.10088 [math.CO], 2025.
- J. Hubička and A. Zucker, A survey on big Ramsey structures, arXiv:2407.17958 [math.LO], 2025.
Crossrefs
The corresponding sequence for countable universal graphs (e.g. the Rado/random graph) is A000182.
Comments