L. Van Warren has authored 5 sequences.
Original entry on oeis.org
1, -4, 16, -64, 256, -1024, 4096, -16384, 65536, -262144, 1048576, -4194304, 16777216, -67108864, 268435456, -1073741824, 4294967296, -17179869184, 68719476736, -274877906944, 1099511627776, -4398046511104, 17592186044416, -70368744177664, 281474976710656
Offset: 0
-
[(-1)^n*4^n: n in [0..30]]; // Vincenzo Librandi, Oct 06 2015
-
(-4)^Range[0, 15] (* Alonso del Arte, Mar 16 2016 *)
-
vector(100, n, n--; (-4)^n) \\ Altug Alkan, Oct 05 2015
-
Vec(1/(1+4*x) + O(x^30)) \\ Michel Marcus, Oct 06 2015
-
lista(nn) = for (n=0, nn, z = (1+I)^n; if (imag(z)==0, print1(real(z), ", "))); \\ Michel Marcus, Nov 01 2015
A124264
Hilbert-Warren Add Sequence.
Original entry on oeis.org
2, 5, 20, 51, 312, 740, 15000, 34125, 160720, 4988592, 180774720, 844074000, 27991656000, 66264953040
Offset: 1
L. Van Warren (van(AT)wdv.com), Oct 23 2006
-
/* [wxMaxima: input start ] */ load("eigen"); order : 4; X : columnvector(makelist(concat(x,i), i, 1, order)); h[i,j] := (i + j)/(i + j - 1); Unity[i,j] := 1; A : genmatrix(h, order, order); A . X; B : genmatrix(Unity, 1, order); A . X = B; Ap : triangularize(A); Ap . X = B; App : invert(Ap); App . B; /* [wxMaxima: input end ] */
The author said that this version of the submission was unsatisfactory and set me a better version in email, which may replace this. -
N. J. A. Sloane, Oct 24 2006
A124265
Variant sequence generated by solving the order n x n linear problem [H]x = b where b is the unit vector and the sequence term is given by the denominator of the last unknown xn.
Original entry on oeis.org
3, 3, 11, 27, 162, 380, 7650, 17325, 81340, 2518992, 91128240, 424947600, 14078156400, 33300661680, 424624548348
Offset: 1
L. Van Warren (van(AT)wdv.com), Oct 23 2006
-
HilbertWarren(fun, order) := ( Unity[i,j] := 1, A : genmatrix(fun, order, order), B : genmatrix(Unity, 1, order), App : invert(triangularize(A)), Xp : App . B, 1/Xp[order] ); findWarrenSequenceTerms(fun, a, b) := ( L : append(), for order: a next order+1 through b do L: cons(first(HilbertWarren(fun,order)), L), S : reverse(L) ); k : 15; hilbert[i,j] := 1/(i + j - 1); findWarrenSequenceTerms(hilbert, 1, k); hilbertA0[i,j] := (i + j + 0)/(i + j - 1); /* sum 1 */ findWarrenSequenceTerms(hilbertA0, 1, k); hilbertA1[i,j] := (i + j + 1)/(i + j - 1); /* sum 2: there are lots of these, increment numerator */ findWarrenSequenceTerms(hilbertA1, 1, k); hilbertD1[i,j] := (i - j + 1)/(i + j - 1); /* difference 1 */ findWarrenSequenceTerms(hilbertD1, 1, k); hilbertP1[i,j] := (i * j + 0)/(i + j - 1); /* product 1 */ findWarrenSequenceTerms(hilbertP1, 1, k); hilbertQ1[i,j] := (i / j)/(i + j - 1); /* quotient 1 */ findWarrenSequenceTerms(hilbertQ1, 1, k);
A124261
Sequence terms are generated by solving the n x n linear algebra problem [H]x = b, where b is the unit vector. Only xn, the last unknown is used.
Original entry on oeis.org
1, 1, 2, 3, 12, 20, 300, 525, 1960, 49392, 1481760, 5821200, 164656800, 336370320, 3741185448
Offset: 1
L. Van Warren (van(AT)wdv.com), Oct 23 2006
Triangularization of [H] is performed, followed by inversion or back substitution. The terms are the denominators of the last solution xn to the Hilbert matrices of order 1, 2, ... 15, respectively. The numerator is unity in all cases.
For order 3 problem the solutions are: ([1/6],[ -1/3],[1/2]), thus a() = 2, since we just take the denominator.
-
load("eigen"); order : 4; X : columnvector(makelist(concat(x,i), i, 1, order)); h[i,j] := 1/(i + j -1); Unity[i,j] := 1; A : genmatrix(h, order, order); A . X; B : genmatrix(Unity, 1, order); A . X = B; Ap : triangularize(A); Ap . X = B; App : invert(Ap); App . B;
The author said that this version of the submission was unsatisfactory and set me a better version in email, which may replace this. -
N. J. A. Sloane, Oct 24 2006
A124266
Variant sequence generated by solving the order n X n linear problem [H]x = b where b is the unit vector and the sequence term is given by the denominator of the last unknown xn.
Original entry on oeis.org
1, 1, 1, 3, 6, 10, 150, 525, 980, 24696, 740880, 2910600, 82328400, 168185160, 1870592724
Offset: 1
L. Van Warren (van(AT)wdv.com), Oct 23 2006
-
HilbertWarren(fun, order) := ( Unity[i,j] := 1, A : genmatrix(fun, order, order), B : genmatrix(Unity, 1, order), App : invert(triangularize(A)), Xp : App . B, 1/Xp[order] ); findWarrenSequenceTerms(fun, a, b) := ( L : append(), for order: a next order+1 thru b do L: cons(first(HilbertWarren(fun,order)), L), S : reverse(L) ); k : 15; hilbert[i,j] := 1/(i + j - 1); findWarrenSequenceTerms(hilbert, 1, k); hilbertA0[i,j] := (i + j + 0)/(i + j - 1); /* sum 1 */ findWarrenSequenceTerms(hilbertA0, 1, k); hilbertA1[i,j] := (i + j + 1)/(i + j - 1); /* sum 2: there are lots of these, increment numerator */ findWarrenSequenceTerms(hilbertA1, 1, k); hilbertD1[i,j] := (i - j + 1)/(i + j - 1); /* difference 1 */ findWarrenSequenceTerms(hilbertD1, 1, k); hilbertP1[i,j] := (i * j + 0)/(i + j - 1); /* product 1 */ findWarrenSequenceTerms(hilbertP1, 1, k); hilbertQ1[i,j] := (i / j)/(i + j - 1); /* quotient 1 */ findWarrenSequenceTerms(hilbertQ1, 1, k); /* Program does not display the correct sequence. Robert C. Lyons, Jul 30 2025 */
Comments