cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Michael Adams

Michael Adams's wiki page.

Michael Adams has authored 2 sequences.

A379748 a(n) is the number of ways to arrange any number of unit square cells into an i X j rectangle which contains exactly n square subarrays of all sizes.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 3, 1, 1, 2, 1, 1, 3, 1, 1, 2, 1, 1, 3, 1, 1, 2, 2, 1, 3, 1, 1, 2, 1, 1, 3, 1, 2, 2, 1, 1, 3, 1, 1, 2, 1, 1, 4, 1, 1, 2, 1, 2, 3, 1, 1, 2, 2, 1, 3, 1, 1, 2, 1, 1, 3, 1, 3, 2, 1, 1, 3, 1, 1, 2, 1, 1, 4, 1, 1, 2, 1, 2, 3, 1, 1, 2
Offset: 1

Author

Michael Adams, Jan 02 2025

Keywords

Comments

For this sequence, an i X j array and a j X i array are considered identical.
The number of different squares in an m X k array is S(m,k) = k(k+1)(3m-k+1)/6 = A082652(m,k) so that a(n) = the number of solutions to S(m,k) = n with m >= k.
a(n) has no upper bound.
It appears all natural numbers appear in the sequence. This is merely conjectured, but is provably true if there are an infinite amount of Sophie-Germain primes.

Examples

			For n=8, the a(8) = 2 rectangular arrays are
  -------------------------
  |A |B |C |D |E |F |G |H |
  -------------------------
and
  ----------
  |A |B |C |
  ----------
  |D |E |F |
  ----------
The first contains n = 8 unit squares (and none bigger).
The second contains 6 unit squares and two 2 X 2 squares (ABDE, BCEF), for S(3,2) = 8 = n squares.
		

Crossrefs

Cf. A082652.

Programs

  • Python
    def a(n):
      output = 0
      k = 1
      while k*(k+1)*((2*k)+1) <= 6*n:
        if (n - (k*(k+1)*((2*k)+1)//6)) % (k*(k+1)//2) == 0:
          output += 1
        k += 1
      return output

Formula

a(n) = Sum_{k=1...N} [n == k(k+1)(2k+1)/6 (mod k(k+1)/2)] where [] is the Iverson bracket and N is the largest natural number such that N(N+1)(2N+1)/6 <= n.

A060196 Decimal expansion of 1 + 1/(1*3) + 1/(1*3*5) + 1/(1*3*5*7) + ...

Original entry on oeis.org

1, 4, 1, 0, 6, 8, 6, 1, 3, 4, 6, 4, 2, 4, 4, 7, 9, 9, 7, 6, 9, 0, 8, 2, 4, 7, 1, 1, 4, 1, 9, 1, 1, 5, 0, 4, 1, 3, 2, 3, 4, 7, 8, 6, 2, 5, 6, 2, 5, 1, 9, 2, 1, 9, 7, 7, 2, 4, 6, 3, 9, 4, 6, 8, 1, 6, 4, 7, 8, 1, 7, 9, 8, 4, 9, 0, 3, 9, 7, 9, 2, 7, 1, 1, 5, 4, 0, 9, 2, 2, 4, 7, 7, 8, 6, 1, 1, 6, 4, 0, 1, 4, 7, 2, 8, 9, 7
Offset: 1

Author

Evan Michael Adams (evan(AT)tampabay.rr.com), Simon Plouffe, Mar 21 2001

Keywords

Examples

			1.410686134642447997690824711419115041323478...
		

References

  • Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Section 6.2, p. 423.

Crossrefs

Programs

  • Mathematica
    RealDigits[ Sqrt[E*Pi/2] * Erf[1/Sqrt[2]], 10, 107] // First
    (* or *) 1/Fold[Function[2*#2-1+(-1)^#2*#2/#1], 1, Reverse[Range[100]]] // N[#, 107]& // RealDigits // First (* Jean-François Alcover, Mar 07 2013, updated Sep 19 2014 *)
  • PARI
    { default(realprecision, 20080); x=2^(-1/2)*exp(1/2)*sqrt(Pi)*(1 - erfc(1/sqrt(2))); for (n=1, 20000, d=floor(x); x=(x-d)*10; write("b060196.txt", n, " ", d)); } \\ Harry J. Smith, Jul 02 2009

Formula

c = sqrt(e*Pi/2)*erf(1/sqrt(2)), or 2^(-1/2)*exp(1/2)*sqrt(Pi)*(1 - erfc(1/sqrt(2))). - Michael Kleber, Mar 21 2001
From Peter Bala, Feb 09 2024: (Start)
Generalized continued fraction expansion:
c = 1/(1 - 1/(4 - 3/(6 - 5/(8 - 7/(10 - 9/(12 - ... )))))). See A286286.
c/(1 + c) = Sum_{n >= 0} (2*n-1)!!/(A112293(n) * A112293(n+1)) = 1/(1*2) + 1/(2*7) + 3/(7*36) + 15/(36*253) + 105/(253*2278) + ... = 0.5851803411..., a rapidly converging series. (End)
Equals Sum_{n >= 0} ((n - 1)*(n + 1)!*2^(n + 1))/(2*n)!. - Antonio Graciá Llorente, Feb 13 2024

Extensions

More terms from Vladeta Jovovic, Mar 27 2001