cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Vardan Semerjyan

Vardan Semerjyan's wiki page.

Vardan Semerjyan has authored 17 sequences. Here are the ten most recent ones:

A270102 Numbers k such that 3^k - k*2^k is prime.

Original entry on oeis.org

3, 4, 5, 7, 8, 10, 11, 23, 34, 62, 95, 128, 173, 251, 260, 464, 628, 1267, 1895, 2057, 2743, 5102, 7790, 49163
Offset: 1

Author

Vardan Semerjyan, Mar 11 2016

Keywords

Comments

a(25) > 10^5. - Michael S. Branicky, Oct 13 2024

Examples

			n = 4 is a term since 3^4 - 4*2^4 = 17 is prime.
		

Crossrefs

Programs

  • MATLAB
    if isprime(3^n - n*2^n)
    disp(n)
    end
    
  • Maple
    A270102:=n->`if`(isprime(3^n-n*2^n),n,NULL): seq(A270102(n),n=1..2000); # Wesley Ivan Hurt, May 08 2016
  • Mathematica
    Select[Range[1, 1000], PrimeQ[3^# - #*2^#] &] (* Vaclav Kotesovec, Mar 11 2016 *)
  • PARI
    is(n)=ispseudoprime(3^n-n*2^n) \\ Charles R Greathouse IV, Jun 06 2017
  • Python
    from gmpy2 import is_prime
    for n in range(5000):
       if(is_prime(3**n-n*2**n)):print(n,end=", ")
    # Soumil Mandal, May 08 2016
    

Extensions

a(24) from Giovanni Resta, May 05 2016

A270104 Numbers k such that 3^k + k*2^k is prime.

Original entry on oeis.org

1, 2, 7, 8, 13, 43, 55, 59, 145, 149, 545, 2468, 4049, 4055, 15653, 22765, 99932
Offset: 1

Author

Vardan Semerjyan, Mar 11 2016

Keywords

Comments

a(17) > 30000. - Giovanni Resta, May 05 2016

Examples

			n = 2 is a term since 3^2 + 2*2^2 = 17 is prime.
		

Crossrefs

Programs

  • MATLAB
    if isprime(3^n + n*2^n)
    disp(n)
    end
    
  • Mathematica
    Select[Range[1000], PrimeQ[3^# + # * 2^#]&] (* Giovanni Resta, May 05 2016 *)
  • PARI
    is(n)=ispseudoprime(3^n+n*2^n) \\ Charles R Greathouse IV, Jun 13 2017

Extensions

a(15)-a(16) from Giovanni Resta, May 05 2016
a(17) from Michael S. Branicky, Jul 06 2024

A265505 Numbers n such that n*2^107 - 1 is prime.

Original entry on oeis.org

1, 25, 36, 81, 246, 273, 358, 378, 595, 658, 684, 703, 706, 739, 759, 883, 909, 958, 963, 970, 991, 1014, 1054, 1138, 1189, 1200, 1209, 1356, 1359, 1476, 1488, 1534, 1554, 1590, 1594, 1684, 1695, 1719, 1785, 1791, 1858, 1929, 2008, 2094, 2103, 2115, 2146, 2224, 2229, 2266, 2278, 2283, 2313, 2325, 2380, 2388, 2401
Offset: 1

Author

Vardan Semerjyan, Dec 09 2015

Keywords

Comments

The exponent of 2 in the expression, 107, is a Mersenne exponent.

Examples

			n = 1 is a term since 2^107 - 1 is prime (the 11th Mersenne prime).
		

Programs

  • MATLAB
    if isprime(n*2^107-1)
    disp(n)
    end
    
  • Mathematica
    Select[Range@ 2401, PrimeQ[# 2^107 - 1] &] (* Michael De Vlieger, Dec 16 2015 *)
  • PARI
    is(n)=ispseudoprime(n*2^107- 1) \\ Anders Hellström, Dec 16 2015

A265504 Numbers n such that n*2^2281 - 1 is prime.

Original entry on oeis.org

1, 1144, 4027, 7485, 9039, 9940, 11286, 11781, 13095, 13236, 13869, 14124, 14764, 16630, 18075, 18795, 19284, 20797, 21436, 22696, 23904, 25297, 25419, 27391, 27564, 28146, 28392, 29865, 30624, 31087, 31137, 31369, 33286, 33724, 33741, 34609, 34837, 35034, 37047, 37075, 39564, 39910, 41181
Offset: 1

Author

Vardan Semerjyan, Dec 09 2015

Keywords

Comments

The exponent of 2 in the expression, 2281, is a Mersenne exponent.
All large values of n correspond to pseudoprimes whose primality needs to be verified.

Examples

			n = 1 is a term since 2^2281 - 1 is prime (the 17th Mersenne prime).
		

Crossrefs

Programs

  • MATLAB
    if isprime(n*2^2281-1)
    disp(n)
    end
    
  • Magma
    [n: n in [1..10^4] |IsPrime(n*2^2281-1)]; // Vincenzo Librandi, Jan 12 2016
  • Mathematica
    Select[Range[10^4], PrimeQ[2^2281 # - 1] &] (* Vincenzo Librandi, Jan 12 2016 *)
  • PARI
    is(n)=ispseudoprime(n*2^2281 - 1) \\ Anders Hellström, Dec 16 2015
    

Extensions

More terms from Soumadeep Ghosh, Feb 14 2016

A265503 Numbers n such that n*2^2203 - 1 is prime.

Original entry on oeis.org

1, 13, 553, 861, 1983, 2065, 2403, 4371, 6226, 6553, 6580, 10128, 10998, 11193, 12411, 12598, 12909, 13056, 13194, 13399, 14589, 15829, 18429, 18436, 19315, 19900, 21574, 23599, 24006, 24024, 24415, 25704, 27225, 27651, 28689, 29461, 29805, 29868, 31143, 31186, 32674, 33706, 34306, 35016, 36118
Offset: 1

Author

Vardan Semerjyan, Dec 09 2015

Keywords

Comments

The exponent of 2 in the expression, 2203, is a Mersenne exponent.

Examples

			n = 1 is a term since 2^2203 - 1 is prime (the 16th Mersenne prime).
		

Crossrefs

Programs

  • MATLAB
    if isprime(n*2^2203-1)
    disp(n)
    end
    
  • Magma
    [n: n in [1..7*10^3] |IsPrime(n*2^2203-1)]; // Vincenzo Librandi, Dec 10 2015
  • Mathematica
    Select[Range@ 36200, PrimeQ[# 2^2203 - 1] &] (* Michael De Vlieger, Dec 09 2015 *)
  • PARI
    is(n)=ispseudoprime(n*2^2203-1) \\ Anders Hellström, Dec 09 2015
    

Extensions

More terms from Michael De Vlieger, Dec 09 2015

A265502 Numbers n such that n*2^1279 - 1 is prime.

Original entry on oeis.org

1, 139, 433, 1563, 2095, 2254, 2871, 3751, 4003, 4338, 4843, 6015, 6331, 6933, 7324, 7345, 7485, 7719, 7836, 8070, 8413, 9018, 9840, 9898, 9915, 9931, 10611, 11215, 11356, 11418, 11560, 11740, 12010, 12673, 13039, 13056, 13225, 14136, 14271, 14380, 14974, 15084
Offset: 1

Author

Vardan Semerjyan, Dec 09 2015

Keywords

Comments

The exponent of 2 in the expression, 1279, is a Mersenne exponent.

Examples

			n = 1 is a term since 2^1279 - 1 is prime (the 15th Mersenne prime).
		

Crossrefs

Programs

  • MATLAB
    if isprime(n*2^1279-1)
    disp(n)
    end
    
  • Magma
    [n: n in [1..10^4] |IsPrime(n*2^1279-1)]; // Vincenzo Librandi, Dec 10 2015
  • Mathematica
    Select[Range@ 11500, PrimeQ[# 2^1279 - 1] &] (* Michael De Vlieger, Dec 09 2015 *)
  • PARI
    is(n)=ispseudoprime(n*2^1279 - 1) \\ Anders Hellström, Dec 09 2015
    

Extensions

Terms a(31) and beyond from Andrew Howroyd, Dec 23 2019

A265499 Numbers n such that n*2^607 - 1 is prime.

Original entry on oeis.org

1, 226, 273, 544, 675, 961, 1380, 1968, 2155, 2193, 2596, 3481, 3774, 4074, 4513, 4674, 4866, 4899, 5004, 5418, 5421, 5536, 5815, 5949, 6159, 6249, 6390, 6523, 6526, 6543, 7230, 7281, 7645, 7699, 7968, 8473, 8518, 8724, 8763, 8871, 9519, 9780, 9805
Offset: 1

Author

Vardan Semerjyan, Dec 09 2015

Keywords

Comments

The exponent of 2 in the expression, 607, is a Mersenne exponent.

Examples

			n = 1 is a term since 2^607 - 1 is prime (the 14th Mersenne prime).
		

Crossrefs

Programs

  • MATLAB
    if isprime(n*2^607-1)
    disp(n)
    end
    
  • Magma
    [n: n in [1..2*10^4] |IsPrime(n*2^607-1)]; // Vincenzo Librandi, Dec 10 2015
  • Mathematica
    Select[Range@ 12250, PrimeQ[# 2^607 - 1] &] (* Michael De Vlieger, Dec 09 2015 *)
  • PARI
    is(n)=ispseudoprime(n*2^607 - 1) \\ Anders Hellström, Dec 09 2015
    

A265498 Numbers n such that n*2^521 - 1 is prime.

Original entry on oeis.org

1, 1362, 1756, 1905, 2337, 2707, 2902, 2997, 3487, 3492, 3787, 3879, 4045, 4266, 4374, 4680, 5106, 5691, 5766, 6321, 6352, 6585, 6819, 7056, 7099, 7162, 7470, 7627, 8055, 8061, 8121, 8499, 8511, 8785, 8865, 9432, 9636, 9876, 10116, 10389, 10629, 10752, 11262
Offset: 1

Author

Vardan Semerjyan, Dec 09 2015

Keywords

Comments

The exponent of 2 in the expression, 521, is a Mersenne exponent.

Examples

			n = 1 is a term since 2^521-1 is prime (13th Mersenne prime).
		

Crossrefs

Programs

  • MATLAB
    if isprime(n*2^521-1)
    disp(n)
    end
    
  • Magma
    [n: n in [1..2*10^4] |IsPrime(n*2^521-1)]; // Vincenzo Librandi, Dec 10 2015
    
  • Mathematica
    Select[Range@ 12050, PrimeQ[# 2^521 - 1] &] (* Michael De Vlieger, Dec 09 2015 *)
  • PARI
    is(n) = ispseudoprime(n*2^521 - 1); \\ Altug Alkan, Dec 10 2015

A265497 Numbers n such that n*2^127 - 1 is prime.

Original entry on oeis.org

1, 103, 190, 289, 460, 483, 511, 534, 651, 793, 820, 880, 901, 939, 945, 958, 1045, 1168, 1195, 1198, 1216, 1374, 1408, 1479, 1489, 1500, 1521, 1534, 1539, 1569, 1599, 1623, 1630, 1671, 1678, 1875, 1938, 1939, 1963, 1996, 2028, 2136, 2140, 2166, 2179, 2289
Offset: 1

Author

Vardan Semerjyan, Dec 09 2015

Keywords

Comments

The exponent of 2 in the expression, 127, is a Mersenne exponent.

Examples

			n = 1 is a term since 2^127 - 1 is prime (the 12th Mersenne prime).
		

Crossrefs

Programs

  • MATLAB
    if isprime(n*2^127-1)
    disp(n)
    end
    
  • Magma
    [n: n in [1..3*10^3] |IsPrime(n*2^127-1)]; // Vincenzo Librandi, Dec 10 2015
  • Mathematica
    Select[Range@ 2560, PrimeQ[# 2^127 - 1] &] (* Michael De Vlieger, Dec 09 2015 *)
  • PARI
    is(n)=ispseudoprime(n*2^127 - 1) \\ Anders Hellström, Dec 09 2015
    

A257749 Prime numbers that have a dodecagonal (12 sides) Voronoi cell in the Voronoi diagram of the Ulam prime spiral.

Original entry on oeis.org

61673, 635939, 706117, 720743, 1483439, 1742501, 1766701, 1847603, 2097959, 2163461, 2365289, 2429411, 3420101, 3490703, 3657361, 3920843, 3973829, 4758973, 4920887, 4989779, 5273753, 6167687, 6223247, 6573559, 6655409, 6694333, 6791881, 7095503, 7102349, 7338293, 7644541
Offset: 1

Author

Vardan Semerjyan, May 07 2015

Keywords

Crossrefs

Programs

  • MATLAB
    sz  = 3001; % Size of the N x N square matrix
    mat = spiral(sz); % MATLAB Function
    k = 1;
    for i =1:sz
        for j=1:sz
            if isprime(mat(i,j)) % Check if the number is prime
                % saving indices of primes
                y(k) = i; x(k) = j;
                k = k+1;
            end
        end
    end
    xy = [x',y'];
    [v,c] = voronoin(xy); %  Returns Voronoi vertices V and
    % the Voronoi cells C
    k = 1;
    for i = 1:length(c)
      szv = size(v(c{i},1));
      polyN(i) = szv(1);
      if polyN(i) == 12
            A(k) = mat(y(i),x(i));
            k = k+1;
          end
    end
    % Print terms
    A = sort(A);
    fprintf('A = ');
    fprintf('%i, ',A);
    % When running the code be aware that the last terms you get might not be correct.
    % They correspond to the points on the outer edges of the spiral which might be
    % altered when considering a larger spiral.
    % Use larger spiral to get more terms