A000127 Maximal number of regions obtained by joining n points around a circle by straight lines. Also number of regions in 4-space formed by n-1 hyperplanes.
1, 2, 4, 8, 16, 31, 57, 99, 163, 256, 386, 562, 794, 1093, 1471, 1941, 2517, 3214, 4048, 5036, 6196, 7547, 9109, 10903, 12951, 15276, 17902, 20854, 24158, 27841, 31931, 36457, 41449, 46938, 52956, 59536, 66712, 74519, 82993, 92171, 102091, 112792, 124314, 136698
Offset: 1
Examples
a(7)=99 because the first five terms in the 7th row of Pascal's triangle are 1 + 7 + 21 + 35 + 35 = 99. - _Geoffrey Critzer_, Jan 18 2009 G.f. = x + 2*x^2 + 4*x^3 + 8*x^4 + 16*x^5 + 31*x^6 + 57*x^7 + 99*x^8 + 163*x^9 + ...
References
- R. B. Banks, Slicing Pizzas, Racing Turtles and Further Adventures in Applied Mathematics, Princeton Univ. Press, 1999. See p. 28.
- L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 72, Problem 2.
- J. H. Conway and R. K. Guy, The Book of Numbers, Copernicus Press, NY, 1996, Chap. 3.
- J. H. Conway and R. K. Guy, Le Livre des Nombres, Eyrolles, 1998, p. 80.
- J.-M. De Koninck & A. Mercier, 1001 Problèmes en Théorie Classique Des Nombres, Problem 33 pp. 18; 128 Ellipses Paris 2004.
- A. Deledicq and D. Missenard, A La Recherche des Régions Perdues, Math. & Malices, No. 22 Summer 1995 issue pp. 22-3 ACL-Editions Paris.
- M. Gardner, Mathematical Circus, pp. 177; 180-1 Alfred A. Knopf NY 1979.
- M. Gardner, The Colossal Book of Mathematics, 2001, p. 561.
- James Gleick, Faster, Vintage Books, NY, 2000 (see pp. 259-261).
- M. de Guzman, Aventures Mathématiques, Prob. B pp. 115-120 PPUR Lausanne 1990.
- Ross Honsberger; Mathematical Gems I, Chap. 9.
- Ross Honsberger; Mathematical Morsels, Chap. 3.
- Jeux Mathématiques et Logiques, Vol. 3 pp. 12; 51 Prob. 14 FFJM-SERMAP Paris 1988.
- J. N. Kapur, Reflections of a Mathematician, Chap.36, pp. 337-343, Arya Book Depot, New Delhi 1996.
- C. D. Miller, V. E. Heeren, J. Hornsby, M. L. Morrow and J. Van Newenhizen, Mathematical Ideas, Tenth Edition, Pearson, Addison-Wesley, Boston, 2003, Cptr 1, 'The Art of Problem Solving, page 6.
- I. Niven, Mathematics of Choice, pp. 158; 195 Prob. 40 NML 15 MAA 1965.
- C. S. Ogilvy, Tomorrow's Math, pp. 144-6 OUP 1972.
- Alfred S. Posamentier, Math Charmers, Tantalizing Tidbits for the Mind, Prometheus Books, NY, 2003, page 252-255.
- Alfred S. Posamentier & Ingmar Lehmann, The (Fabulous) Fibonacci Numbers, Prometheus Books, NY, 2007, page 81-87.
- A. M. Robert, A Course in p-adic Analysis, Springer-Verlag, 2000; p. 213.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- T. D. Noe, Table of n, a(n) for n = 1..1000
- Alan Calvitti, Illustration of initial terms
- M. L. Cornelius, Variations on a geometric progression, Mathematics in School, 4 (No. 3, May 1975), p. 32. (Annotated scanned copy)
- Colin Defant, Meeting Covered Elements in nu-Tamari Lattices, arXiv:2104.03890 [math.CO], 2021.
- M. Griffiths, Remodified Bessel Functions via Coincidences and Near Coincidences, Journal of Integer Sequences, Vol. 14 (2011), Article 11.7.1.
- R. K. Guy, The Second Strong Law of Small Numbers, Math. Mag, 63 (1990), no. 1, 3-20. [Annotated scanned copy]
- R. K. Guy, The strong law of small numbers. Amer. Math. Monthly 95 (1988), no. 8, 697-712. [Annotated scanned copy]
- R. K. Guy, Letter to N. J. A. Sloane
- D. A. Lind, On a class of nonlinear binomial sums, Fib. Quart., 3 (1965), 292-298.
- Math Forum, Regions of a circle Cut by Chords to n points.
- R. J. Mathar, The number of binary nxm matrices with at most k 1's in each row or column, (2014) Table 4 column 1.
- Ângela Mestre and José Agapito, Square Matrices Generated by Sequences of Riordan Arrays, J. Int. Seq., Vol. 22 (2019), Article 19.8.4.
- Leo Moser and W. Bruce Ross, Mathematical Miscellany, On the Danger of Induction, Mathematics Magazine, Vol. 23, No. 2 (Nov. - Dec., 1949), pp. 109-114.
- M. Noy, A Short Solution of a Problem in Combinatorial Geometry, Mathematics Magazine, pp. 52-3 69(1) 1996 MAA.
- Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
- Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992
- Patrick Popescu-Pampu, Démarrage trompeur, Images des Mathématiques, CNRS, 2017, rediffusion 2021 (in French).
- D. J. Price, Some unusual series occurring in n-dimensional geometry, Math. Gaz., 30 (1946), 149-150.
- H. P. Robinson, Letter to N. J. A. Sloane, Mar 21 1985
- Grant Sanderson, Circle division solution, video, 2015.
- Grant Sanderson, Circle division solution, updated video (2023).
- K. Uhland, A Blase of Glory
- K. Uhland, Moser's Problem
- Prasad Balakrishnan Warrier, The physiognomy of the Erdős-Szekeres conjecture (happy ending problem), Math. Student (Indian Math. Soc., 2024) Vol. 93, Nos. 3-4, 28-48.
- Eric Weisstein's World of Mathematics, Circle Division by Chords
- Eric Weisstein's World of Mathematics, Strong Law of Small Numbers
- Reinhart Zumkeller, Enumerations of Divisors
- Index entries for linear recurrences with constant coefficients, signature (5,-10,10,-5,1).
Crossrefs
Programs
-
Haskell
a000127 = sum . take 5 . a007318_row -- Reinhard Zumkeller, Nov 24 2012
-
Magma
[(n^4-6*n^3+23*n^2-18*n+24)/24: n in [1..50]]; // Vincenzo Librandi, Feb 16 2015
-
Maple
A000127 := n->(n^4 - 6*n^3 + 23*n^2 - 18*n + 24)/24; with (combstruct):ZL:=[S, {S=Sequence(U, card
=1)}, unlabeled]: seq(count(subs(r=6, ZL), size=m), m=0..41); # Zerinvary Lajos, Mar 08 2008 -
Mathematica
f[n_] := Sum[Binomial[n, i], {i, 0, 4}]; Table[f@n, {n, 0, 40}] (* Robert G. Wilson v, Jun 29 2007 *) Total/@Table[Binomial[n-1,k],{n,50},{k,0,4}] (* or *) LinearRecurrence[ {5,-10,10,-5,1},{1,2,4,8,16},50] (* Harvey P. Dale, Aug 24 2011 *) Table[(n^4 - 6 n^3 + 23 n^2 - 18 n + 24) / 24, {n, 100}] (* Vincenzo Librandi, Feb 16 2015 *) a[ n_] := Binomial[n, 4] + Binomial[n, 2] + 1; (* Michael Somos, Dec 23 2017 *)
-
PARI
a(n)=(n^4-6*n^3+23*n^2-18*n+24)/24 \\ Charles R Greathouse IV, Mar 22 2016
-
PARI
{a(n) = binomial(n, 4) + binomial(n, 2) + 1}; /* Michael Somos, Dec 23 2017 */
-
Python
def A000127(n): return n*(n*(n*(n - 6) + 23) - 18)//24 + 1 # Chai Wah Wu, Sep 18 2021
Formula
a(n) = C(n-1, 4) + C(n-1, 3) + ... + C(n-1, 0) = A055795(n) + 1 = C(n, 4) + C(n-1, 2) + n.
a(n) = Sum_{k=0..2} C(n, 2k). - Joel Sanderi (sanderi(AT)itstud.chalmers.se), Sep 08 2004
a(n) = (n^4 - 6*n^3 + 23*n^2 - 18*n + 24)/24.
G.f.: (1 - 3*x + 4*x^2 - 2*x^3 + x^4)/(1-x)^5. (for offset 0) - Simon Plouffe in his 1992 dissertation
E.g.f.: (1 + x + x^2/2 + x^3/6 + x^4/24)*exp(x) (for offset 0). [Typos corrected by Juan M. Marquez, Jan 24 2011]
a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5), n > 4. - Harvey P. Dale, Aug 24 2011
a(n) = A223718(-n). - Michael Somos, Dec 23 2017
For n > 2, a(n) = n + 1 + sum_{i=2..(n-2)}sum_{j=1..(n-i)}(1+(i-1)(j-1)). - Alec Jones, Nov 17 2019
Extensions
Formula corrected and additional references from torsten.sillke(AT)lhsystems.com
Additional correction from Jonas Paulson (jonasso(AT)sdf.lonestar.org), Oct 30 2003
Comments