A000309 Number of rooted planar bridgeless cubic maps with 2n nodes.
1, 1, 4, 24, 176, 1456, 13056, 124032, 1230592, 12629760, 133186560, 1436098560, 15774990336, 176028860416, 1990947110912, 22783499599872, 263411369705472, 3073132646563840, 36143187370967040, 428157758086840320, 5105072641718353920, 61228492804372561920
Offset: 0
References
- C. F. Earl and L. J. March, Architectural applications of graph theory, pp. 327-355 of R. J. Wilson and L. W. Beineke, editors, Applications of Graph Theory. Academic Press, NY, 1979.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- T. D. Noe, Table of n, a(n) for n = 0..100
- Marie Albenque, Dominique Poulalhon, A Generic Method for Bijections between Blossoming Trees and Planar Maps, Electron. J. Combin., 22 (2015), #P2.38.
- Dario Benedetti, Sylvain Carrozza, Reiko Toriumi, Guillaume Valette, Multiple scaling limits of U(N)^2 X O(D) multi-matrix models, arXiv:2003.02100 [math-ph], 2020.
- Olivier Bernardi, Bijective counting of Kreweras walks and loopless triangulations, Journal of Combinatorial Theory, Series A 114:5 (2007), 931-956.
- Junliang Cai, Yanpei Liu, The enumeration of rooted nonseparable nearly cubic maps, Discrete Math. 207 (1999), no. 1-3, 9--24. MR1710479 (2000g:05074). See (31).
- Robert Cori and Gilles Schaeffer, Description trees and Tutte formulas, Theoretical Computer Science 292:1 (2003), 165-183.
- S. Dulucq and O. Guibert, Stack words, standard tableaux and Baxter permutations, Disc. Math. 157 (1996), 91-106.
- C. F. Earl and L. J. March, Architectural applications of graph theory, pp. 327-355 of R. J. Wilson and L. W. Beineke, editors, Applications of Graph Theory. Academic Press, NY, 1979. (Annotated scanned copy)
- Hsien-Kuei Hwang, Mihyun Kang, Guan-Huei Duh, Asymptotic Expansions for Sub-Critical Lagrangean Forms, LIPIcs Proceedings of Analysis of Algorithms 2018, Vol. 110. Schloss Dagstuhl-Leibniz-Zentrum für Informatik, 2018.
- R. C. Mullin, On counting rooted triangular maps, Canad. J. Math., v.17 (1965), 373-382.
- Elena Patyukova, Taylor Rottreau, Robert Evans, Paul D. Topham, Martin J. Greenall, Hydrogen Bonding Aggregation in Acrylamide: Theory and Experiment, Macromolecules (2018) Vol. 51, No. 18, 7032-7043. Also arXiv:1805.09878 [math.CA], 2018.
- W. T. Tutte, A census of Hamiltonian polygons, Canad. J. Math., 14 (1962), 402-417.
- W. T. Tutte, On the enumeration of four-colored maps, SIAM J. Appl. Math., 17 (1969), 454-460.
- Noam Zeilberger, A theory of linear typings as flows on 3-valent graphs, arXiv:1804.10540 [cs.LO], 2018.
- Noam Zeilberger, A Sequent Calculus for a Semi-Associative Law, arXiv:1803.10080 [math.LO], March 2018 (A revised version of a 2017 conference paper)
- Noam Zeilberger, A proof-theoretic analysis of the rotation lattice of binary trees, Part 1 (video), Part 2, Rutgers Experimental Math Seminar, Sep 13 2018.
- Jian Zhou, Fat and Thin Emergent Geometries of Hermitian One-Matrix Models, arXiv:1810.03883 [math-ph], 2018.
Crossrefs
Programs
-
GAP
List([0..20], n -> 2^(n+1)*Factorial(3*n)/(Factorial(n)* Factorial(2*n+2))); # G. C. Greubel, Nov 29 2018
-
Magma
[2^(n+1)*Factorial(3*n)/(Factorial(n)*Factorial(2*n+2)): n in [0..20]]; // Vincenzo Librandi, Aug 10 2014
-
Maple
a := n -> 2^(n+1)*(3*n)!/(n!*(2*n+2)!); A000309 := n -> -(-2)^(n-1)*(3*n+2)*hypergeom([-3*(n+1),-n,-n+1/3], [-n-1,-n-2/3], 1): seq(simplify(A000309(n)), n = 0..21); # Peter Luschny, Oct 28 2022
-
Mathematica
f[n_] := 2^n(3n)!/((n + 1)!(2n + 1)!); Table[f[n], {n, 0, 19}] (* Robert G. Wilson v, Sep 21 2004 *) Join[{1},RecurrenceTable[{a[1]==1,a[n]==4a[n-1] Binomial[3n,3]/ Binomial[2n+2,3]}, a[n],{n,20}]] (* Harvey P. Dale, May 11 2011 *)
-
PARI
a(n) = 2^(n+1)*(3*n)!/(n!*(2*n+2)!); \\ Michel Marcus, Aug 09 2014
-
Sage
[2^n*factorial(3*n)/(factorial(n+1)*factorial(2*n+1))for n in range(20)] # G. C. Greubel Nov 29 2018
Formula
a(n) = 2^(n-1) * A000139(n) for n > 0.
a(n) = 4*a(n-1)*binomial(3*n, 3) / binomial(2*n+2, 3).
a(n) = 2^n*(3*n)!/ ( (n+1)!*(2*n+1)! ).
G.f.: (1/(6*x)) * (hypergeom([ -2/3, -1/3],[1/2],(27/2)*x)-1). - Mark van Hoeij, Nov 02 2009
a(n) ~ 3^(3*n+1/2)/(sqrt(Pi)*2^(n+2)*n^(5/2)). - Ilya Gutkovskiy, Oct 06 2016
D-finite with recurrence (n+1)*(2*n+1)*a(n) -3*(3*n-1)*(3*n-2)*a(n-1)=0. - R. J. Mathar, Nov 02 2018
a(n) = -(-2)^(n-1)*(3*n+2)*hypergeom([-3*(n+1),-n,-n+1/3], [-n-1,-n-2/3], 1). The a(n) are values of the polynomials A358091. - Peter Luschny, Oct 28 2022
From Karol A. Penson, Feb 24 2025: (Start)
G.f.: hypergeom([1/3, 2/3, 1], [3/2, 2], (27*z)/2).
G.f. A(z) satisfies: - 1 + 27*z + (-36*z + 1)*A(z) + 8*z*A(z)^2 + 16*z^2*A(z)^3 = 0.
G.f.: ((4*sqrt(4 - 54*z) + 12*i*sqrt(6)*sqrt(z))^(1/3)*(sqrt(z*(4 - 54*z)) - 9*i*sqrt(6)*z) + (4*sqrt(4 - 54*z) - 12*i*sqrt(6)*sqrt(z))^(1/3)*(9*i*sqrt(6)*z + sqrt(z*(4 - 54*z))) - 8*sqrt(z))/(48*z^(3/2)), where i = sqrt(-1) is the imaginary unit.
a(n) = Integral_{x=0..27/2} x^n*W(x), where W(x) = (6^(1/3)*(9 + sqrt(81 - 6*x))^(2/3)*(9*sqrt(3) - sqrt(27 - 2*x)) - 2^(2/3)*3^(1/6)*(27 + sqrt(81 - 6*x))*x^(1/3))/(48*Pi*(9 + sqrt(81 - 6*x))^(1/3)*x^(2/3)).
This integral representation is unique as W(x) is the solution of the Hausdorff power moment problem for x on (0, 27/2). Using only the definition of a(n), W(x) can be proven to be positive. W(x) is singular at x = 0, with singularity x^(-2/3), and for x > 0 is monotonically decreasing to zero at x = 27/2. (End)
Extensions
Definition clarified by Michael Albert, Oct 24 2008
Comments