A000400 Powers of 6: a(n) = 6^n.
1, 6, 36, 216, 1296, 7776, 46656, 279936, 1679616, 10077696, 60466176, 362797056, 2176782336, 13060694016, 78364164096, 470184984576, 2821109907456, 16926659444736, 101559956668416, 609359740010496, 3656158440062976, 21936950640377856, 131621703842267136
Offset: 0
References
- John H. Conway and Richard K. Guy, The Book of Numbers, New York: Springer-Verlag, 1996. See p. 86.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- T. D. Noe, Table of n, a(n) for n = 0..100
- C. Banderier and D. Merlini, Lattice paths with an infinite set of jumps, FPSAC02, Melbourne, 2002.
- Peter J. Cameron, Sequences realized by oligomorphic permutation groups, J. Integ. Seqs. Vol. 3 (2000), #00.1.5.
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 271
- Tanya Khovanova, Recursive Sequences
- Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
- Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992
- Yash Puri and Thomas Ward, Arithmetic and growth of periodic orbits, J. Integer Seqs., Vol. 4 (2001), #01.2.1.
- Eric Weisstein's World of Mathematics, Pentaflake
- Index entries for linear recurrences with constant coefficients, signature (6).
Crossrefs
Programs
-
Haskell
a000400 = (6 ^) a000400_list = iterate (* 6) 1 -- Reinhard Zumkeller, Nov 21 2013
-
Mathematica
6^Range[0, 40] (* Harvey P. Dale, Jan 24 2013 *)
-
Maxima
A000400(n):=6^n$ makelist(A000400(n),n,0,30); /* Martin Ettl, Nov 05 2012 */
-
PARI
a(n)=6^n \\ Charles R Greathouse IV, Jun 16 2011
-
Scala
(List.fill(50)(6: BigInt)).scanLeft(1: BigInt)( * ) // Alonso del Arte, May 31 2019
Formula
a(n) = 6^n.
a(0) = 1; a(n) = 6*a(n-1).
G.f.: 1/(1-6*x). - Simon Plouffe in his 1992 dissertation.
E.g.f.: exp(6*x).
a(n) = det(|s(i+3,j)|, 1 <= i,j <= n), where s(n,k) are Stirling numbers of the first kind. - Mircea Merca, Apr 04 2013
Comments