cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A000400 Powers of 6: a(n) = 6^n.

Original entry on oeis.org

1, 6, 36, 216, 1296, 7776, 46656, 279936, 1679616, 10077696, 60466176, 362797056, 2176782336, 13060694016, 78364164096, 470184984576, 2821109907456, 16926659444736, 101559956668416, 609359740010496, 3656158440062976, 21936950640377856, 131621703842267136
Offset: 0

Views

Author

Keywords

Comments

Same as Pisot sequences E(1, 6), L(1, 6), P(1, 6), T(1, 6). Essentially same as Pisot sequences E(6, 36), L(6, 36), P(6, 36), T(6, 36). See A008776 for definitions of Pisot sequences.
Central terms of the triangle in A036561. - Reinhard Zumkeller, May 14 2006
a(n) = A169604(n)/3; a(n+1) = 2*A169604(n). - Reinhard Zumkeller, May 02 2010
Number of pentagons contained within pentaflakes. - William A. Tedeschi, Sep 12 2010
Sum of coefficients of expansion of (1 + x + x^2 + x^3 + x^4 + x^5)^n.
a(n) is number of compositions of natural numbers into n parts less than 6. For example, a(2) = 36, and there are 36 compositions of natural numbers into 2 parts less than 6.
The compositions of n in which each part is colored by one of p different colors are called p-colored compositions of n. For n >= 1, a(n) equals the number of 5-colored compositions of n such that no adjacent parts have the same color.
Number of words of length n over the alphabet of six letters. - Joerg Arndt, Sep 16 2014
The number of ordered triples (x, y, z) of binary words of length n such that D(x,z) = D(x, y) + D(y, z) where D(a, b) is the Hamming distance from a to b. - Geoffrey Critzer, Mar 06 2017
a(n) is the area of a triangle with vertices at (2^n, 3^n), (2^(n+1), 3^(n+1)), and (2^(n+2), 3^(n+2)); a(n) is also one fifth the area of a triangle with vertices at (2^n, 3^(n+2)), (2^(n+1), 3^(n+1)), and (2^(n+2), 3^n). - J. M. Bergot, May 07 2018
a(n) is the number of possible outcomes of n distinguishable 6-sided dice. - Stefano Spezia, Jul 06 2024

References

  • John H. Conway and Richard K. Guy, The Book of Numbers, New York: Springer-Verlag, 1996. See p. 86.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Column 3 of A225816.
Row 6 of A003992.
Row 3 of A329332.

Programs

Formula

a(n) = 6^n.
a(0) = 1; a(n) = 6*a(n-1).
G.f.: 1/(1-6*x). - Simon Plouffe in his 1992 dissertation.
E.g.f.: exp(6*x).
A000005(a(n)) = A000290(n+1). - Reinhard Zumkeller, Mar 04 2007
a(n) = A159991(n)/A011577(n). - Reinhard Zumkeller, May 02 2009
a(n) = det(|s(i+3,j)|, 1 <= i,j <= n), where s(n,k) are Stirling numbers of the first kind. - Mircea Merca, Apr 04 2013