A000574 Coefficient of x^5 in expansion of (1 + x + x^2)^n.
3, 16, 51, 126, 266, 504, 882, 1452, 2277, 3432, 5005, 7098, 9828, 13328, 17748, 23256, 30039, 38304, 48279, 60214, 74382, 91080, 110630, 133380, 159705, 190008, 224721, 264306, 309256, 360096, 417384, 481712, 553707, 634032, 723387, 822510
Offset: 3
References
- L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 78.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- Vincenzo Librandi, Table of n, a(n) for n = 3..1000
- L. Carlitz et al., Permutations and sequences with repetitions by number of increases, J. Combin. Theory, 1 (1966), 350-374.
- Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
- Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992
- Eric Weisstein's World of Mathematics, Trinomial Coefficient
- Index entries for linear recurrences with constant coefficients, signature (6,-15,20,-15,6,-1).
Crossrefs
Programs
-
Magma
[3*Binomial(n+2,5)-2*Binomial(n+1,5): n in [3..50]]; // Vincenzo Librandi, Jun 10 2012
-
Maple
A000574:=-(-3+2*z)/(z-1)**6; # conjectured by Simon Plouffe in his 1992 dissertation seq(3*binomial(n+2,5)-2*binomial(n+1,5),n=3..100); # Robert Israel, Aug 04 2015 A000574 := n -> GegenbauerC(`if`(5
A000574(n)), n=3..20); # Peter Luschny, May 10 2016 -
Mathematica
CoefficientList[Series[(3-2*x)/(1-x)^6,{x,0,40}],x] (* Vincenzo Librandi, Jun 10 2012 *)
-
PARI
x='x+O('x^50); Vec(x^3*(3-2*x)/(1-x)^6) \\ G. C. Greubel, Nov 22 2017
Formula
G.f.: x^3*(3-2*x)/(1-x)^6.
a(n) = 3*binomial(n+2,5) - 2*binomial(n+1,5).
a(n) = A111808(n,5) for n>4. - Reinhard Zumkeller, Aug 17 2005
a(n) = binomial(n+1, 4)*(n+12)/5 = 3*b(n-3)-2*b(n-4), with b(n)=binomial(n+5, 5); cf. A000389.
a(n) = 6*a(n-1) - 15*a(n-2) + 20*a(n-3) - 15*a(n-4) + 6*a(n-5) - a(n-6). - Vincenzo Librandi, Jun 10 2012
a(n) = 3*binomial(n, 3) + 4*binomial(n, 4) + binomial(n, 5). - Vladimir Shevelev and Peter J. C. Moses, Jun 22 2012
a(n) = GegenbauerC(N, -n, -1/2) where N = 5 if 5Peter Luschny, May 10 2016
E.g.f.: exp(x)*x^3*(60 + 20*x + x^2)/120. - Stefano Spezia, Jul 09 2023
Extensions
More terms from Vladeta Jovovic, Oct 02 2000
Comments