cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A000574 Coefficient of x^5 in expansion of (1 + x + x^2)^n.

Original entry on oeis.org

3, 16, 51, 126, 266, 504, 882, 1452, 2277, 3432, 5005, 7098, 9828, 13328, 17748, 23256, 30039, 38304, 48279, 60214, 74382, 91080, 110630, 133380, 159705, 190008, 224721, 264306, 309256, 360096, 417384, 481712, 553707, 634032, 723387, 822510
Offset: 3

Views

Author

Keywords

Comments

If Y is a 3-subset of an n-set X then, for n>=7, a(n-4) is the number of 5-subsets of X having at most one element in common with Y. - Milan Janjic, Nov 23 2007

References

  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 78.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Column m=5 of (1, 3) Pascal triangle A095660.

Programs

  • Magma
    [3*Binomial(n+2,5)-2*Binomial(n+1,5): n in [3..50]]; // Vincenzo Librandi, Jun 10 2012
    
  • Maple
    A000574:=-(-3+2*z)/(z-1)**6; # conjectured by Simon Plouffe in his 1992 dissertation
    seq(3*binomial(n+2,5)-2*binomial(n+1,5),n=3..100); # Robert Israel, Aug 04 2015
    A000574 := n -> GegenbauerC(`if`(5A000574(n)), n=3..20); # Peter Luschny, May 10 2016
  • Mathematica
    CoefficientList[Series[(3-2*x)/(1-x)^6,{x,0,40}],x] (* Vincenzo Librandi, Jun 10 2012 *)
  • PARI
    x='x+O('x^50); Vec(x^3*(3-2*x)/(1-x)^6) \\ G. C. Greubel, Nov 22 2017

Formula

G.f.: x^3*(3-2*x)/(1-x)^6.
a(n) = 3*binomial(n+2,5) - 2*binomial(n+1,5).
a(n) = A111808(n,5) for n>4. - Reinhard Zumkeller, Aug 17 2005
a(n) = binomial(n+1, 4)*(n+12)/5 = 3*b(n-3)-2*b(n-4), with b(n)=binomial(n+5, 5); cf. A000389.
a(n) = 6*a(n-1) - 15*a(n-2) + 20*a(n-3) - 15*a(n-4) + 6*a(n-5) - a(n-6). - Vincenzo Librandi, Jun 10 2012
a(n) = 3*binomial(n, 3) + 4*binomial(n, 4) + binomial(n, 5). - Vladimir Shevelev and Peter J. C. Moses, Jun 22 2012
a(n) = GegenbauerC(N, -n, -1/2) where N = 5 if 5Peter Luschny, May 10 2016
a(n) = Sum_{i=1..n-1} A000217(i)*A055998(n-1-i). - Bruno Berselli, Mar 05 2018
E.g.f.: exp(x)*x^3*(60 + 20*x + x^2)/120. - Stefano Spezia, Jul 09 2023

Extensions

More terms from Vladeta Jovovic, Oct 02 2000