A000582 a(n) = binomial coefficient C(n,9).
1, 10, 55, 220, 715, 2002, 5005, 11440, 24310, 48620, 92378, 167960, 293930, 497420, 817190, 1307504, 2042975, 3124550, 4686825, 6906900, 10015005, 14307150, 20160075, 28048800, 38567100, 52451256, 70607460, 94143280, 124403620, 163011640, 211915132
Offset: 9
References
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 828.
- Albert H. Beiler, Recreations in the Theory of Numbers, Dover, NY, 1964, p. 196.
- L. E. Dickson, History of the Theory of Numbers. Carnegie Institute Public. 256, Washington, DC, Vol. 1, 1919; Vol. 2, 1920; Vol. 3, 1923, see vol. 2, p. 7.
- J. C. P. Miller, editor, Table of Binomial Coefficients. Royal Society Mathematical Tables, Vol. 3, Cambridge Univ. Press, 1954.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- T. D. Noe, Table of n, a(n) for n = 9..1000
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].
- Peter J. Cameron, Sequences realized by oligomorphic permutation groups, J. Integ. Seqs. Vol. 3 (2000), #00.1.5.
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 259
- Milan Janjic, Two Enumerative Functions
- Hyun Kwang Kim, On Regular Polytope Numbers, Proc. Amer. Math. Soc., Vol. 131, No. 1 (2002), pp. 65-75.
- P. A. MacMahon, Memoir on the Theory of the Compositions of Numbers, Phil. Trans. Royal Soc. London A, 184 (1893), 835-901.
- Ângela Mestre and José Agapito, Square Matrices Generated by Sequences of Riordan Arrays, J. Int. Seq., Vol. 22 (2019), Article 19.8.4.
- Rajesh Kumar Mohapatra and Tzung-Pei Hong, On the Number of Finite Fuzzy Subsets with Analysis of Integer Sequences, Mathematics (2022) Vol. 10, No. 7, 1161.
- Feihu Liu, Guoce Xin, and Chen Zhang, Ehrhart Polynomials of Order Polytopes: Interpreting Combinatorial Sequences on the OEIS, arXiv:2412.18744 [math.CO], 2024. See pp. 13, 15.
- Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
- Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992
- Jonathan Vos Post, Table of Polytope Numbers, Sorted, Through 1,000,000.
- Ch. Stover and E. W. Weisstein, Composition. From MathWorld - A Wolfram Web Resource.
- Index entries for linear recurrences with constant coefficients, signature (10,-45,120,-210,252,-210,120,-45,10,-1).
Programs
-
Magma
[Binomial(n,9) : n in [9..50]]; // Wesley Ivan Hurt, Jul 20 2014
-
Maple
A000582 := n->binomial(n,9): seq(A000582(n), n=9..40); A000582:=1/(z-1)**10; # Simon Plouffe in his 1992 dissertation (offset 0) seq(binomial(n,9),n=0..29); # Zerinvary Lajos, Jun 23 2008, R. J. Mathar, Jul 07 2009
-
Mathematica
Table[n(n+1)(n+2)(n+3)(n+4)(n+5)(n+6)(n+7)(n+8)/9!,{n,100}] (* Artur Jasinski, Dec 02 2007 *) Table[Binomial[n, 9], {n, 9, 50}] (* Wesley Ivan Hurt, Jul 20 2014 *)
-
PARI
a(n)=binomial(n,9) \\ Charles R Greathouse IV, Jul 21 2014
Formula
G.f.: x^9/(1-x)^10.
a(n) = -A110555(n+1, 9). - Reinhard Zumkeller, Jul 27 2005
a(n+8) = n(n+1)(n+2)(n+3)(n+4)(n+5)(n+6)(n+7)(n+8)/9!. - Artur Jasinski, Dec 02 2007; R. J. Mathar, Jul 07 2009
Sum_{k>=9} 1/a(k) = 9/8. - Tom Edgar, Sep 10 2015
Sum_{n>=9} (-1)^(n+1)/a(n) = A001787(9)*log(2) - A242091(9)/8! = 2304*log(2) - 446907/280 = 0.9146754386... - Amiram Eldar, Dec 10 2020
Extensions
Formulas referring to other offsets rewritten by R. J. Mathar, Jul 07 2009
Comments