cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A000748 Expansion of bracket function.

Original entry on oeis.org

1, -3, 6, -9, 9, 0, -27, 81, -162, 243, -243, 0, 729, -2187, 4374, -6561, 6561, 0, -19683, 59049, -118098, 177147, -177147, 0, 531441, -1594323, 3188646, -4782969, 4782969, 0, -14348907, 43046721, -86093442, 129140163, -129140163, 0, 387420489, -1162261467
Offset: 0

Views

Author

Keywords

Comments

It appears that the sequence coincides with its third-order absolute difference. - John W. Layman, Sep 05 2003
It appears that, for n > 0, the (unsigned) a(n) = 3*|A057682(n)| = 3*|Sum_{j=0..floor(n/3)} (-1)^j*binomial(n,3*j+1)|. - John W. Layman, Sep 05 2003

Examples

			G.f. = 1 - 3*x + 6*x^2 - 9*x^3 + 9*x^4 - 27*x^6 + 81*x^7 - 162*x^8 + ...
		

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Column 3 of A307047.
Cf. A057682.

Programs

  • Magma
    I:=[1,-3]; [n le 2 select I[n] else -3*Self(n-1)-3*Self(n-2): n in [1..40]]; // Vincenzo Librandi, Feb 11 2016
  • Maple
    A000748:=(-1-2*z-3*z**2-3*z**3+18*z**5)/(-1+z+9*z**5); # conjectured by Simon Plouffe in his 1992 dissertation; gives sequence apart from signs
    a:= n-> (Matrix([[ -3,1], [ -3,0]])^n)[1,1]: seq(a(n), n=0..40); # Alois P. Heinz, Sep 06 2008
  • Mathematica
    a[n_] := 2*3^(n/2)*Sin[(1-5*n)*Pi/6]; Table[a[n], {n, 0, 40}] (* Jean-François Alcover, Mar 12 2014 *)
    LinearRecurrence[{-3, -3}, {1, -3}, 40] (* Jean-François Alcover, Feb 11 2016 *)
  • PARI
    {a(n) = if( n<0, 0, polcoeff(1 / (1 + 3*x + 3*x^2) + x * O(x^n), n))}; /* Michael Somos, Jun 07 2005 */
    
  • PARI
    {a(n) = if( n<0, 0, 3^((n+1)\2) * (-1)^(n\6) * ((-1)^n + (n%3==2)))}; /* Michael Somos, Sep 29 2007 */
    

Formula

G.f.: 1/((1+x)^3-x^3).
a(n) = A007653(3^n).
a(n) = -3*a(n-1) - 3*a(n-2). - Paul Curtz, May 12 2008
a(n) = Sum_{k=1..n} binomial(k,n-k)*(-3)^(k) for n > 0; a(0)=1. - Vladimir Kruchinin, Feb 07 2011
G.f.: 1/(1 + 3*x /(1 - x /(1+x))). - Michael Somos, May 12 2012
G.f.: G(0)/2, where G(k) = 1 + 1/( 1 - 3*x*(2*k+1 + x)/(3*x*(2*k+2 + x) - 1/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, Feb 09 2014
a(n) = 2*3^(n/2)*sin((1-5*n)*Pi/6). - Jean-François Alcover, Mar 12 2014
a(n) = (-1)^n * Sum_{k=0..floor(n/3)} (-1)^k * binomial(n+2,3*k+2). - Seiichi Manyama, Aug 05 2024
a(n) = (i*sqrt(3)/3)*((-3/2 - i*sqrt(3)/2)^(n+1) - (-3/2 + i*sqrt(3)/2)^(n+1)), where i = sqrt(-1). - Taras Goy, Jan 20 2025
a(n) = -2*a(n-1) + 3*a(n-3). - Taras Goy, Jan 26 2025