A001016 Eighth powers: a(n) = n^8.
0, 1, 256, 6561, 65536, 390625, 1679616, 5764801, 16777216, 43046721, 100000000, 214358881, 429981696, 815730721, 1475789056, 2562890625, 4294967296, 6975757441, 11019960576, 16983563041, 25600000000, 37822859361, 54875873536, 78310985281, 110075314176
Offset: 0
References
- Granino A. Korn and Theresa M. Korn, Mathematical Handbook for Scientists and Engineers, McGraw-Hill Book Company, New York (1968), p. 982.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- T. D. Noe, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (9, -36, 84, -126, 126, -84, 36, -9, 1).
Crossrefs
Programs
-
Magma
[n^8 : n in [0..50]]; // Wesley Ivan Hurt, Apr 01 2016
-
Maple
A001016:=n->n^8: seq(A001016(n), n=0..50); # Wesley Ivan Hurt, Apr 01 2016
-
Mathematica
Table[n^8, {n, 0, 20}] (* Vladimir Joseph Stephan Orlovsky, Sep 27 2008 *)
-
Maxima
A001016(n):=n^8$ makelist(A001016(n),n,0,30); /* Martin Ettl, Nov 05 2012 */
-
PARI
A001016(n)=n^8 \\ Charles R Greathouse IV, Sep 24 2015
-
Python
A001016 = lambda n: n**8 # M. F. Hasler, Jul 03 2025
Formula
Multiplicative with a(p^e) = p^(8e). - David W. Wilson, Aug 01 2001
Totally multiplicative sequence with a(p) = p^8 for primes p. - Jaroslav Krizek, Nov 01 2009
G.f.: -x*(1+x)*(x^6+246*x^5+4047*x^4+11572*x^3+4047*x^2+246*x+1)/(x-1)^9. - R. J. Mathar, Jan 07 2011
a(n) = 8*a(n-1) - 28*a(n-2) + 56*a(n-3) - 70*a(n-4) + 56*a(n-5) - 28*a(n-6) + 8*a(n-7) - a(n-8) + 40320. - Ant King, Sep 24 2013
From Wesley Ivan Hurt, Apr 01 2016: (Start)
a(n) = 9*a(n-1) - 36*a(n-2) + 84*a(n-3) - 126*a(n-4) + 126*a(n-5) - 84*a(n-6) + 36*a(n-7) - 9*a(n-8) + a(n-9) for n > 8.
a(n) = A000583(n)^2. (End)
From Amiram Eldar, Oct 08 2020: (Start)
Sum_{n>=1} 1/a(n) = zeta(8) = Pi^8/9450 (A013666).
Sum_{n>=1} (-1)^(n+1)/a(n) = 127*zeta(8)/128 = 127*Pi^8/1209600. (End)
E.g.f.: exp(x)*x*(1 + 127*x + 966*x^2 + 1701*x^3 + 1050*x^4 + 266*x^5 + 28*x^6 + x^7). - Stefano Spezia, Jul 29 2022
Extensions
More terms from James Sellers, Sep 19 2000
Comments