A001068 a(n) = floor(5*n/4), numbers that are congruent to {0, 1, 2, 3} mod 5.
0, 1, 2, 3, 5, 6, 7, 8, 10, 11, 12, 13, 15, 16, 17, 18, 20, 21, 22, 23, 25, 26, 27, 28, 30, 31, 32, 33, 35, 36, 37, 38, 40, 41, 42, 43, 45, 46, 47, 48, 50, 51, 52, 53, 55, 56, 57, 58, 60, 61, 62, 63, 65, 66, 67, 68, 70, 71, 72, 73, 75, 76, 77, 78, 80, 81, 82, 83, 85, 86, 87, 88
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..10000
- Paul Erdős, Some recent problems and results in graph theory, Discr. Math., Vol. 164, No. 1-3 (1997), pp. 81-85.
- Wikipedia, Continued fraction for arctangent.
- R. Witula, P. Lorenc, M. Rozanski and M. Szweda, Sums of the rational powers of roots of cubic polynomials, Zeszyty Naukowe Politechniki Slaskiej, Seria: Matematyka Stosowana z. 4, Nr. kol. 1920, (2014), pp. 17-34.
- Index entries for linear recurrences with constant coefficients, signature (1,0,0,1,-1).
Crossrefs
Programs
-
Magma
[Floor(5*n/4): n in [0..80]]; // Vincenzo Librandi, Nov 13 2011
-
Maple
A001068:=n->floor(5*n/4); seq(A001068(k), k=0..100); # Wesley Ivan Hurt, Nov 07 2013
-
Mathematica
Table[Floor[5*n/4],{n,0,120}] (* Vladimir Joseph Stephan Orlovsky, Jan 28 2012 *) #+{0,1,2,3}&/@(5*Range[0,20])//Flatten (* or *) Complement[Range[0,103],5*Range[20]-1] (* Harvey P. Dale, Dec 03 2023 *)
-
PARI
a(n)=5*n\4 /* or, cf. comment: */ a(n)=contfrac(atan(1/n))[4] \\ M. F. Hasler, Oct 21 2008
Formula
contfrac( arctan( 1/n )) = 0 + 1/( n + 1/( 3n + 1/( a(n) + 1/(...)))). - M. F. Hasler, Oct 21 2008
a(n) = Sum_{k>=0} A030308(n,k)*b(k) with b(0)=1, b(1)=2 and b(k)=5*2^(k-2) for k>1. - Philippe Deléham, Oct 17 2011.
From Bruno Berselli, Oct 17 2011: (Start)
G.f.: x*(1+x+x^2+2*x^3)/((1+x)*(1-x)^2*(1+x^2)).
a(n) = (10*n+2*(-1)^((n-1)n/2)+(-1)^n-3)/8.
a(-n) = -A047203(n+1). (End)
From Wesley Ivan Hurt, Sep 17 2015: (Start)
a(n) = a(n-1) + a(n-4) - a(n-5) for n>4.
a(n) = n + floor(n/4). (End)
a(n) = n + A002265(n). - Robert Israel, Sep 17 2015
E.g.f.: (sin(x) + cos(x) + (5*x - 2)*sinh(x) + (5*x - 1)*cosh(x))/4. - Ilya Gutkovskiy, May 06 2016
Sum_{n>=1} (-1)^(n+1)/a(n) = log(5)/4 + sqrt(5)*log(phi)/10 + sqrt(5-2*sqrt(5))*Pi/10, where phi is the golden ratio (A001622). - Amiram Eldar, Dec 10 2021
Extensions
More terms from James Sellers, Sep 19 2000
Comments