A008969
Triangle of differences of reciprocals of unity.
Original entry on oeis.org
1, 1, 3, 1, 11, 7, 1, 50, 85, 15, 1, 274, 1660, 575, 31, 1, 1764, 48076, 46760, 3661, 63, 1, 13068, 1942416, 6998824, 1217776, 22631, 127, 1, 109584, 104587344, 1744835904, 929081776, 30480800, 137845, 255, 1, 1026576, 7245893376, 673781602752, 1413470290176, 117550462624, 747497920, 833375, 511
Offset: 1
Triangle T(n,k) begins:
1;
1, 3;
1, 11, 7;
1, 50, 85, 15;
1, 274, 1660, 575, 31;
1, 1764, 48076, 46760, 3661, 63;
1, 13068, 1942416, 6998824, 1217776, 22631, 127;
1, 109584, 104587344, 1744835904, 929081776, 30480800, 137845, 255;
...
- F. N. David, M. G. Kendall and D. E. Barton, Symmetric Function and Allied Tables, Cambridge, 1966, p. 228.
-
T:= (n,k)-> `if`(k<=n, (n-k+2)!^k *
add((-1)^(j+1)*binomial(n-k+2, j)/ j^k, j=1..n-k+2), 0):
seq(seq(T(n,k), k=0..n), n=0..7); # Alois P. Heinz, Sep 05 2008
-
T[n_, k_] := If[k <= n, (n-k+2)!^k*Sum[(-1)^(j+1)*Binomial[n-k+2, j]/j^k, {j, 1, n-k+2}], 0]; Table[Table[T[n, k], {k, 0, n}], {n, 0, 7}] // Flatten (* Jean-François Alcover, Mar 10 2014, after Alois P. Heinz *)
A112492
Triangle from inverse scaled Pochhammer symbols.
Original entry on oeis.org
1, 1, 1, 1, 3, 1, 1, 7, 11, 1, 1, 15, 85, 50, 1, 1, 31, 575, 1660, 274, 1, 1, 63, 3661, 46760, 48076, 1764, 1, 1, 127, 22631, 1217776, 6998824, 1942416, 13068, 1, 1, 255, 137845, 30480800, 929081776, 1744835904, 104587344, 109584, 1, 1, 511, 833375, 747497920, 117550462624, 1413470290176, 673781602752, 7245893376, 1026576, 1
Offset: 0
Triangle begins:
1;
1, 1;
1, 3, 1;
1, 7, 11, 1;
1, 15, 85, 50, 1;
1, 31, 575, 1660, 274, 1;
1, 63, 3661, 46760, 48076, 1764, 1;
1, 127, 22631, 1217776, 6998824, 1942416, 13068, 1; ...
The g.f.s for the rows are illustrated by:
Sum_{n>=0} (n+1)^(n-1)*exp((n+1)*x)*(-x)^n/n! = 1;
Sum_{n>=0} (n+1)^(n-2)*exp((n+1)*x)*(-x)^n/n! = 1 + 1*x/2!;
Sum_{n>=0} (n+1)^(n-3)*exp((n+1)*x)*(-x)^n/n! = 1 + 3*x/2!^2 + 1*x^2/3!;
Sum_{n>=0} (n+1)^(n-4)*exp((n+1)*x)*(-x)^n/n! = 1 + 7*x/2!^3 + 11*x^2/3!^2 + 1*x^3/4!;
Sum_{n>=0} (n+1)^(n-5)*exp((n+1)*x)*(-x)^n/n! = 1 + 15*x/2!^4 + 85*x^2/3!^3 + 50*x^3/4!^2 + 1*x^4/5!; ...
which are derived from a LambertW() identity. - _Paul D. Hanna_, Oct 20 2012
- Charles Jordan, Calculus of Finite Differences, Chelsea, 1965.
-
function T(n,k) // T = A112492
if k eq 0 or k eq n then return 1;
else return (k+1)^(n-k)*T(n-1,k-1) + Factorial(k)*T(n-1,k);
end if;
end function;
[T(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Jul 24 2023
-
T[, 0]=1; T[n, m_]:= -m!^(n-m+1)*Sum[(-1)^j*Binomial[m, j]/j^(n-m+ 1), {j,m}]; Table[T[n, m], {n,10}, {m,0,n}]//Flatten (* Jean-François Alcover, Jul 09 2013, from 2nd formula *)
-
{h(n,recurse=1) = if(recurse == 0, return(1)); ;
return( sum(k=0,n, h(k,recurse-1) / (1+k) )); }
a(r,c) = h(r-1,c-r) * r!^(c-r) \\ Gottfried Helms, Dec 11 2001
-
/* From g.f. for column k: */
T(n,k) = (k+1)!^(n-k+1)*polcoeff(prod(j=0,k,1/(j+1-x +x*O(x^(n-k)))),n-k)
for(n=0,10,for(k=0,n,print1(T(n,k),", "));print()) \\ Paul D. Hanna, Oct 20 2012
-
/* From g.f. for row n: */
T(n,k) = (k+1)!^(n-k+1)*polcoeff(sum(j=0,k,(j+1)^(j-n-1)*exp((j+1)*x +x*O(x^k))*(-x)^j/j!),k)
for(n=0,10,for(k=0,n,print1(T(n,k),", "));print()) \\ Paul D. Hanna, Oct 20 2012
-
def T(n,k): # T = A112492
if (k==0 or k==n): return 1
else: return (k+1)^(n-k)*T(n-1,k-1) + factorial(k)*T(n-1,k)
flatten([[T(n,k) for k in range(n+1)] for n in range(13)]) # G. C. Greubel, Jul 24 2023
A103878
Expansion of x / ((1-12x)(1-15x)(1-20x)(1-30x)(1-60x)).
Original entry on oeis.org
0, 1, 137, 12019, 874853, 58067611, 3673451957, 226576032859, 13790081534933, 833490615528571, 50196582942983477, 3017503478665411099, 181223386494229073813, 10878637590184410995131, 652876078076017863582197, 39177315318319288337595739
Offset: 0
- Colin Barker, Table of n, a(n) for n = 0..562
- Jerry Metzger and Thomas Richards, A Prisoner Problem Variation, Journal of Integer Sequences, Vol. 18 (2015), Article 15.2.7.
- Index entries for linear recurrences with constant coefficients, signature (137,-6750,153000,-1620000,6480000).
-
CoefficientList[Series[x/((1-12x)(1-15x)(1-20x)(1-30x)(1-60x)),{x,0,20}],x] (* or *) LinearRecurrence[ {137,-6750,153000,-1620000,6480000},{0,1,137,12019,874853},20] (* Harvey P. Dale, Aug 31 2024 *)
-
concat(0, Vec(x/(-6480000*x^5+1620000*x^4-153000*x^3+6750*x^2-137*x+1) + O(x^100))) \\ Colin Barker, Apr 26 2015
A111886
Sixth column of triangle A112492 (inverse scaled Pochhammer symbols).
Original entry on oeis.org
1, 1764, 1942416, 1744835904, 1413470290176, 1083688832185344, 806595068762689536, 590914962115587293184, 429295503918929370218496, 310518802877016005311463424, 224098118280955193084850733056
Offset: 0
Also right-hand column 5 in triangle
A008969.
-
A111886:= func< n | (-1)*Factorial(6)^n*(&+[(-1)^j*Binomial(6,j)/j^n : j in [1..6]]) >;
[A111886(n): n in [0..30]]; // G. C. Greubel, Jul 24 2023
-
T[n_, k_]:= T[n, k]= If[k==0 || k==n, 1, (k+1)^(n-k)*T[n-1,k-1] +k!*T[n-1,k]]; (* T = A112492 *)
Table[T[n+5,5], {n,0,30}] (* G. C. Greubel, Jul 24 2023 *)
-
a(n) = -((6!)^n)*sum(j=1, 6, (-1)^j*binomial(6, j)/j^n); \\ Michel Marcus, Apr 28 2020
-
@CachedFunction
def T(n,k): # T = A112492
if (k==0 or k==n): return 1
else: return (k+1)^(n-k)*T(n-1,k-1) + factorial(k)*T(n-1,k)
def A111886(n): return T(n+5,5)
[A111886(n) for n in range(31)] # G. C. Greubel, Jul 24 2023
A111887
Seventh column of triangle A112492 (inverse scaled Pochhammer symbols).
Original entry on oeis.org
1, 13068, 104587344, 673781602752, 3878864920694016, 21006340945438768128, 110019668725577574273024, 565858042127972959667208192, 2882220940619488483325345857536, 14605752814655604919042956624396288
Offset: 0
Also right-hand column 6 in triangle
A008969.
-
A111887:= func< n | (-1)*Factorial(7)^n*(&+[(-1)^j*Binomial(7,j)/j^n : j in [1..7]]) >;
[A111887(n): n in [0..30]]; // G. C. Greubel, Jul 24 2023
-
T[n_, k_]:= T[n, k]= If[k==0 || k==n, 1, (k+1)^(n-k)*T[n-1,k-1] + k!*T[n-1,k]]; (* T = A112492 *)
Table[T[n+6,6], {n,0,30}] (* G. C. Greubel, Jul 24 2023 *)
-
a(n) = -((7!)^n)*sum(j=1, 7, ((-1)^j)*binomial(7, j)/j^n); \\ Michel Marcus, Apr 28 2020
-
@CachedFunction
def T(n,k): # T = A112492
if (k==0 or k==n): return 1
else: return (k+1)^(n-k)*T(n-1,k-1) + factorial(k)*T(n-1,k)
def A111887(n): return T(n+6,6)
[A111887(n) for n in range(31)] # G. C. Greubel, Jul 24 2023
A111888
Eighth column of triangle A112492 (inverse scaled Pochhammer symbols).
Original entry on oeis.org
1, 109584, 7245893376, 381495483224064, 17810567950611972096, 778101042571221893382144, 32762625292956765972873609216, 1351813956241264848815287984717824
Offset: 0
Also right-hand column 7 in triangle
A008969.
-
A111888:= func< n | (-1)*Factorial(8)^n*(&+[(-1)^j*Binomial(8,j)/j^n : j in [1..8]]) >;
[A111888(n): n in [0..30]]; // G. C. Greubel, Jul 24 2023
-
T[n_, k_]:= T[n, k]= If[k==0 || k==n, 1, (k+1)^(n-k)*T[n-1,k-1] +k!*T[n-1,k]]; (* T = A112492 *)
Table[T[n+7,7], {n,0,30}] (* G. C. Greubel, Jul 24 2023 *)
-
a(n) = -((8!)^n)*sum(j=1, 8, ((-1)^j)*binomial(8, j)/j^n); \\ Michel Marcus, Apr 28 2020
-
@CachedFunction
def T(n,k): # T = A112492
if (k==0 or k==n): return 1
else: return (k+1)^(n-k)*T(n-1,k-1) + factorial(k)*T(n-1,k)
def A111888(n): return T(n+7,7)
[A111888(n) for n in range(31)] # G. C. Greubel, Jul 24 2023
Showing 1-6 of 6 results.
Comments