cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A008969 Triangle of differences of reciprocals of unity.

Original entry on oeis.org

1, 1, 3, 1, 11, 7, 1, 50, 85, 15, 1, 274, 1660, 575, 31, 1, 1764, 48076, 46760, 3661, 63, 1, 13068, 1942416, 6998824, 1217776, 22631, 127, 1, 109584, 104587344, 1744835904, 929081776, 30480800, 137845, 255, 1, 1026576, 7245893376, 673781602752, 1413470290176, 117550462624, 747497920, 833375, 511
Offset: 1

Views

Author

Keywords

Examples

			Triangle T(n,k) begins:
  1;
  1,      3;
  1,     11,         7;
  1,     50,        85,         15;
  1,    274,      1660,        575,        31;
  1,   1764,     48076,      46760,      3661,       63;
  1,  13068,   1942416,    6998824,   1217776,    22631,    127;
  1, 109584, 104587344, 1744835904, 929081776, 30480800, 137845, 255;
  ...
		

References

  • F. N. David, M. G. Kendall and D. E. Barton, Symmetric Function and Allied Tables, Cambridge, 1966, p. 228.

Crossrefs

Columns include A000254, A000424, A001236, A001237, A001238. Right-hand columns include A000225, A001240, A001241, A001242.

Programs

  • Maple
    T:= (n,k)-> `if`(k<=n, (n-k+2)!^k *
         add((-1)^(j+1)*binomial(n-k+2, j)/ j^k, j=1..n-k+2), 0):
    seq(seq(T(n,k), k=0..n), n=0..7); # Alois P. Heinz, Sep 05 2008
  • Mathematica
    T[n_, k_] := If[k <= n, (n-k+2)!^k*Sum[(-1)^(j+1)*Binomial[n-k+2, j]/j^k, {j, 1, n-k+2}], 0]; Table[Table[T[n, k], {k, 0, n}], {n, 0, 7}] // Flatten (* Jean-François Alcover, Mar 10 2014, after Alois P. Heinz *)

A112492 Triangle from inverse scaled Pochhammer symbols.

Original entry on oeis.org

1, 1, 1, 1, 3, 1, 1, 7, 11, 1, 1, 15, 85, 50, 1, 1, 31, 575, 1660, 274, 1, 1, 63, 3661, 46760, 48076, 1764, 1, 1, 127, 22631, 1217776, 6998824, 1942416, 13068, 1, 1, 255, 137845, 30480800, 929081776, 1744835904, 104587344, 109584, 1, 1, 511, 833375, 747497920, 117550462624, 1413470290176, 673781602752, 7245893376, 1026576, 1
Offset: 0

Views

Author

Wolfdieter Lang, Sep 12 2005

Keywords

Comments

This expansion is based on the partial fraction identity: 1/Product_{j=1..m}(x+j) = (1 + Sum_{j=1..m} (-1)^j*binomial(m,j) * x/(x+j))/m!, e.g., p. 37 of the Jordan reference.
Another version of this triangle (without a column of 1's) is A008969.
The column sequences are, for m=1..10: A000012 (powers of 1), A000225, A001240, A001241, A001242, A111886-A111888.
From Gottfried Helms, Dec 11 2001: (Start)
The triangle occurs as U-factor in the LDU-decomposition of the matrix M defined by m(r,c) = 1/(1+r)^c (r, c beginning at 0).
Then
a(r,c) = m(r,c) * (1+r)!^(c-r).
An explicit expansion based on this can be made by defining a "recursive harmonic number" (rhn). (This representation is just a heuristic pattern-interpretation, no analytic proof yet available).
Consider
h(k,0)=1 for k>0 as rhn of order zero(0).
Then consider
h(1,1)=1*h(1,0)
h(2,1)=1*h(1,0) + 1/2*h(2,0)
h(3,1)=1*h(1,0) + 1/2*h(2,0) + 1/3*h(3,0) = h(2,1)+1/3*h(3,0)
...
and recursively
h(1,r)=1*h(1,r-1)
h(2,r)=1*h(1,r-1) + 1/2*h(2,r-1)
h(3,r)=1*h(1,r-1) + 1/2*h(2,r-1) + 1/3*h(3,r-1) = h(2,r)+1/3*h(3,r-1)
...
h(k,r)=h(k-1,r)+1/k*h(k,r-1)
then the upper triangular triangle A:=a(r,c) for c-r>0
a(r,c) = h(r,c-r) *(1+r)!^(c-r).
(End)

Examples

			Triangle begins:
  1;
  1,   1;
  1,   3,     1;
  1,   7,    11,       1;
  1,  15,    85,      50,       1;
  1,  31,   575,    1660,     274,       1;
  1,  63,  3661,   46760,   48076,    1764,     1;
  1, 127, 22631, 1217776, 6998824, 1942416, 13068,    1; ...
The g.f.s for the rows are illustrated by:
Sum_{n>=0} (n+1)^(n-1)*exp((n+1)*x)*(-x)^n/n! = 1;
Sum_{n>=0} (n+1)^(n-2)*exp((n+1)*x)*(-x)^n/n! = 1 + 1*x/2!;
Sum_{n>=0} (n+1)^(n-3)*exp((n+1)*x)*(-x)^n/n! = 1 + 3*x/2!^2 + 1*x^2/3!;
Sum_{n>=0} (n+1)^(n-4)*exp((n+1)*x)*(-x)^n/n! = 1 + 7*x/2!^3 + 11*x^2/3!^2 + 1*x^3/4!;
Sum_{n>=0} (n+1)^(n-5)*exp((n+1)*x)*(-x)^n/n! = 1 + 15*x/2!^4 + 85*x^2/3!^3 + 50*x^3/4!^2 + 1*x^4/5!; ...
which are derived from a LambertW() identity. - _Paul D. Hanna_, Oct 20 2012
		

References

  • Charles Jordan, Calculus of Finite Differences, Chelsea, 1965.

Crossrefs

Row sums give A111885.

Programs

  • Magma
    function T(n,k) // T = A112492
      if k eq 0 or k eq n then return 1;
      else return (k+1)^(n-k)*T(n-1,k-1) + Factorial(k)*T(n-1,k);
      end if;
    end function;
    [T(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Jul 24 2023
    
  • Mathematica
    T[, 0]=1; T[n, m_]:= -m!^(n-m+1)*Sum[(-1)^j*Binomial[m, j]/j^(n-m+ 1), {j,m}]; Table[T[n, m], {n,10}, {m,0,n}]//Flatten (* Jean-François Alcover, Jul 09 2013, from 2nd formula *)
  • PARI
    {h(n,recurse=1) = if(recurse == 0, return(1)); ;
    return( sum(k=0,n, h(k,recurse-1) / (1+k) )); }
    a(r,c) = h(r-1,c-r) * r!^(c-r) \\ Gottfried Helms, Dec 11 2001
    
  • PARI
    /* From g.f. for column k: */
    T(n,k) = (k+1)!^(n-k+1)*polcoeff(prod(j=0,k,1/(j+1-x +x*O(x^(n-k)))),n-k)
    for(n=0,10,for(k=0,n,print1(T(n,k),", "));print()) \\ Paul D. Hanna, Oct 20 2012
    
  • PARI
    /* From g.f. for row n: */
    T(n,k) = (k+1)!^(n-k+1)*polcoeff(sum(j=0,k,(j+1)^(j-n-1)*exp((j+1)*x +x*O(x^k))*(-x)^j/j!),k)
    for(n=0,10,for(k=0,n,print1(T(n,k),", "));print()) \\ Paul D. Hanna, Oct 20 2012
    
  • SageMath
    def T(n,k): # T = A112492
        if (k==0 or k==n): return 1
        else: return (k+1)^(n-k)*T(n-1,k-1) + factorial(k)*T(n-1,k)
    flatten([[T(n,k) for k in range(n+1)] for n in range(13)]) # G. C. Greubel, Jul 24 2023

Formula

G.f. for column m>=1: (x^m)/product(1-m!*x/j, j=1..m).
T(n, m) = -(m!^(n-m+1))*Sum_{j=1..m} (-1)^j*binomial(m, j)/j^(n-m+1), m>=1. T(n, m)=0 if n+1
G.f. of column k: x^k/Product_{j=0..k} (j+1 - x) = Sum_{n>=k} T(n,k)*x^k/(k+1)!^(n-k+1). - Paul D. Hanna, Oct 20 2012
T(n,k) = (k+1)!^(n-k+1) * [x^n] x^k / Product_{j=0..k} (j+1 - x). - Paul D. Hanna, Oct 20 2012
G.f. of row n: Sum_{j>=0} (j+1)^(j-n-1) * exp((j+1)*x) * (-x)^j/j! = Sum_{k>=0} T(n,k)*x^k/(k+1)!^(n-k+1). - Paul D. Hanna, Oct 20 2012
T(n,k) = (k+1)!^(n-k+1) * [x^k] Sum_{j>=0} (j+1)^(j-n-1) * exp((j+1)*x) * (-x)^j/j!. - Paul D. Hanna, Oct 20 2012
T(n,0) = T(n,n) = 1 and T(n,k) = (k+1)^(n-k)*T(n-1,k-1)+(k!)*T(n-1,k) for 0Werner Schulte, Dec 14 2016

Extensions

Terms a(48) onward added by G. C. Greubel, Nov 12 2017

A103878 Expansion of x / ((1-12x)(1-15x)(1-20x)(1-30x)(1-60x)).

Original entry on oeis.org

0, 1, 137, 12019, 874853, 58067611, 3673451957, 226576032859, 13790081534933, 833490615528571, 50196582942983477, 3017503478665411099, 181223386494229073813, 10878637590184410995131, 652876078076017863582197, 39177315318319288337595739
Offset: 0

Author

Ralf Stephan, Feb 20 2005

Keywords

Crossrefs

Cf. A001242.

Programs

  • Mathematica
    CoefficientList[Series[x/((1-12x)(1-15x)(1-20x)(1-30x)(1-60x)),{x,0,20}],x] (* or *) LinearRecurrence[ {137,-6750,153000,-1620000,6480000},{0,1,137,12019,874853},20] (* Harvey P. Dale, Aug 31 2024 *)
  • PARI
    concat(0, Vec(x/(-6480000*x^5+1620000*x^4-153000*x^3+6750*x^2-137*x+1) + O(x^100))) \\ Colin Barker, Apr 26 2015

Formula

a(n) = (1/12) (12^n - 4*15^n + 6*20^n - 4*30^n + 60^n).

A111886 Sixth column of triangle A112492 (inverse scaled Pochhammer symbols).

Original entry on oeis.org

1, 1764, 1942416, 1744835904, 1413470290176, 1083688832185344, 806595068762689536, 590914962115587293184, 429295503918929370218496, 310518802877016005311463424, 224098118280955193084850733056
Offset: 0

Author

Wolfdieter Lang, Sep 12 2005

Keywords

Comments

Also continuation of family of differences of reciprocals of unity. See A001242 and triangle A008969.

Crossrefs

Also right-hand column 5 in triangle A008969.

Programs

  • Magma
    A111886:= func< n | (-1)*Factorial(6)^n*(&+[(-1)^j*Binomial(6,j)/j^n : j in [1..6]]) >;
    [A111886(n): n in [0..30]]; // G. C. Greubel, Jul 24 2023
    
  • Mathematica
    T[n_, k_]:= T[n, k]= If[k==0 || k==n, 1, (k+1)^(n-k)*T[n-1,k-1] +k!*T[n-1,k]]; (* T = A112492 *)
    Table[T[n+5,5], {n,0,30}] (* G. C. Greubel, Jul 24 2023 *)
  • PARI
    a(n) = -((6!)^n)*sum(j=1, 6, (-1)^j*binomial(6, j)/j^n); \\ Michel Marcus, Apr 28 2020
    
  • SageMath
    @CachedFunction
    def T(n,k): # T = A112492
        if (k==0 or k==n): return 1
        else: return (k+1)^(n-k)*T(n-1,k-1) + factorial(k)*T(n-1,k)
    def A111886(n): return T(n+5,5)
    [A111886(n) for n in range(31)] # G. C. Greubel, Jul 24 2023

Formula

G.f.: 1/Product_{j=1..6} (1-6!*x/j).
a(n) = -((6!)^n)*Sum_{j=1..6} (-1)^j*binomial(6, j)/j^n, n >= 0.
a(n) = A112492(n+5, 6), n>=0.

A111887 Seventh column of triangle A112492 (inverse scaled Pochhammer symbols).

Original entry on oeis.org

1, 13068, 104587344, 673781602752, 3878864920694016, 21006340945438768128, 110019668725577574273024, 565858042127972959667208192, 2882220940619488483325345857536, 14605752814655604919042956624396288
Offset: 0

Author

Wolfdieter Lang, Sep 12 2005

Keywords

Comments

Also continuation of family of differences of reciprocals of unity. See A001242, A111886 and triangle A008969.

Crossrefs

Also right-hand column 6 in triangle A008969.

Programs

  • Magma
    A111887:= func< n | (-1)*Factorial(7)^n*(&+[(-1)^j*Binomial(7,j)/j^n : j in [1..7]]) >;
    [A111887(n): n in [0..30]]; // G. C. Greubel, Jul 24 2023
    
  • Mathematica
    T[n_, k_]:= T[n, k]= If[k==0 || k==n, 1, (k+1)^(n-k)*T[n-1,k-1] + k!*T[n-1,k]]; (* T = A112492 *)
    Table[T[n+6,6], {n,0,30}] (* G. C. Greubel, Jul 24 2023 *)
  • PARI
    a(n) = -((7!)^n)*sum(j=1, 7, ((-1)^j)*binomial(7, j)/j^n); \\ Michel Marcus, Apr 28 2020
    
  • SageMath
    @CachedFunction
    def T(n,k): # T = A112492
        if (k==0 or k==n): return 1
        else: return (k+1)^(n-k)*T(n-1,k-1) + factorial(k)*T(n-1,k)
    def A111887(n): return T(n+6,6)
    [A111887(n) for n in range(31)] # G. C. Greubel, Jul 24 2023

Formula

G.f.: 1/Product_{j=1..7} 1-7!*x/j.
a(n) = -((7!)^n) * Sum_{j=1..7} (-1)^j*binomial(7, j)/j^n, n>=0.
a(n) = A112492(n+6, 7), n>=0.

A111888 Eighth column of triangle A112492 (inverse scaled Pochhammer symbols).

Original entry on oeis.org

1, 109584, 7245893376, 381495483224064, 17810567950611972096, 778101042571221893382144, 32762625292956765972873609216, 1351813956241264848815287984717824
Offset: 0

Author

Wolfdieter Lang, Sep 12 2005

Keywords

Comments

Also continuation of family of Differences of reciprocals of unity. See A001242, A111887 and triangle A008969.

Crossrefs

Also right-hand column 7 in triangle A008969.

Programs

  • Magma
    A111888:= func< n | (-1)*Factorial(8)^n*(&+[(-1)^j*Binomial(8,j)/j^n : j in [1..8]]) >;
    [A111888(n): n in [0..30]]; // G. C. Greubel, Jul 24 2023
    
  • Mathematica
    T[n_, k_]:= T[n, k]= If[k==0 || k==n, 1, (k+1)^(n-k)*T[n-1,k-1] +k!*T[n-1,k]]; (* T = A112492 *)
    Table[T[n+7,7], {n,0,30}] (* G. C. Greubel, Jul 24 2023 *)
  • PARI
    a(n) = -((8!)^n)*sum(j=1, 8, ((-1)^j)*binomial(8, j)/j^n); \\ Michel Marcus, Apr 28 2020
    
  • SageMath
    @CachedFunction
    def T(n,k): # T = A112492
        if (k==0 or k==n): return 1
        else: return (k+1)^(n-k)*T(n-1,k-1) + factorial(k)*T(n-1,k)
    def A111888(n): return T(n+7,7)
    [A111888(n) for n in range(31)] # G. C. Greubel, Jul 24 2023

Formula

G.f.: 1/Product_{j=1..8} 1-8!*x/j.
a(n) = -((8!)^n) * Sum_{j=1..8} (-1)^j*binomial(8, j)/j^n, n>=0.
a(n) = A112492(n+7, 8), n>=0.
Showing 1-6 of 6 results.