A026430 a(n) is the sum of first n terms of A001285 (Thue-Morse sequence).
0, 1, 3, 5, 6, 8, 9, 10, 12, 14, 15, 16, 18, 19, 21, 23, 24, 26, 27, 28, 30, 31, 33, 35, 36, 37, 39, 41, 42, 44, 45, 46, 48, 50, 51, 52, 54, 55, 57, 59, 60, 61, 63, 65, 66, 68, 69, 70, 72, 73, 75, 77, 78, 80, 81, 82, 84, 86, 87, 88, 90, 91, 93
Offset: 0
Links
- Winston de Greef, Table of n, a(n) for n = 0..10000 (first 1001 terms from T. D. Noe)
- Nicholas John Bizzell-Browning, LIE scales: Composing with scales of linear intervallic expansion, Ph. D. Thesis, Brunel Univ. (UK, 2024). See p. 143.
Programs
-
Haskell
a026430 n = a026430_list !! n a026430_list = scanl (+) 0 a001285_list -- Reinhard Zumkeller, Jun 28 2013
-
Mathematica
A001285 = Table[ Mod[ Sum[ Mod[ Binomial[n, k], 2], {k, 0, n}], 3], {n, 0, 61}]; Accumulate[A001285] (* Jean-François Alcover, Sep 25 2012 *) Join[{0}, Accumulate[1 + ThueMorse /@ Range[0, 100]]] (* Jean-François Alcover, Sep 18 2019, from version 10.2 *)
-
PARI
first(n)=my(v=vector(n)); v[1]=1; for(k=2,n,v[k]=if(k%2,v[k\2+1]-v[k\2])+k\2*3); concat(0,v) \\ Charles R Greathouse IV, May 09 2016
-
Python
from itertools import accumulate, islice def A026430_gen(): # generator of terms yield from (0,1) blist, s = [1], 1 while True: c = [3-d for d in blist] blist += c yield from (s+d for d in accumulate(c)) s += sum(c) A026430_list = list(islice(A026430_gen(),30)) # Chai Wah Wu, Feb 22 2023
-
Python
def A026430(n): return n+(n-1>>1)+(n-1&1|(n.bit_count()&1^1)) # Chai Wah Wu, Mar 01 2023
Formula
a(0)=0, a(1)=1, a(2n) = 3n, a(2n+1) = -a(n) + a(n+1) + 3n. - Ralf Stephan, Oct 08 2003
G.f.: x*(3/(1 - x)^2 - Product_{k>=1} (1 - x^(2^k)))/2. - Ilya Gutkovskiy, Apr 03 2019
Comments