A001477 The nonnegative integers.
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77
Offset: 0
Examples
Triangular view: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54
References
- Maurice Protat, Des Olympiades à l'Agrégation, suite vérifiant f(n+1) > f(f(n)), Problème 7, pp. 31-32, Ellipses, Paris 1997.
Links
- N. J. A. Sloane, Table of n, a(n) for n = 0..500000
- Paul Barry, A Catalan Transform and Related Transformations on Integer Sequences, Journal of Integer Sequences, Vol. 8 (2005), Article 05.4.5.
- David Corneth, Counting to 13999 visualized | showing changes per digit, YouTube video, 2019.
- Hans Havermann, Table giving n and American English name for n, for 0 <= n <= 100999, without spaces or hyphens
- Hans Havermann, American English number names to one million, without spaces or hyphens
- The IMO Compendium, Problem 6, 19th IMO 1977.
- Tanya Khovanova, Recursive Sequences
- Luis Manuel Rivera, Integer sequences and k-commuting permutations, arXiv preprint arXiv:1406.3081 [math.CO], 2014-2015.
- László Németh, The trinomial transform triangle, J. Int. Seqs., Vol. 21 (2018), Article 18.7.3. Also arXiv:1807.07109 [math.NT], 2018.
- N. J. A. Sloane, "A Handbook of Integer Sequences" Fifty Years Later, arXiv:2301.03149 [math.NT], 2023, p. 12.
- Eric Weisstein's World of Mathematics, Natural Number
- Eric Weisstein's World of Mathematics, Nonnegative Integer
- Index entries for "core" sequences
- Index entries for sequences that are permutations of the natural numbers
- Index entries for linear recurrences with constant coefficients, signature (2,-1).
- Index to sequences related to Olympiads.
Crossrefs
Cf. A000027 (n>=1).
Cf. A000012 (first differences).
Partial sums of A057427. - Jeremy Gardiner, Sep 08 2002
Cf. A055112.
Cf. A245422.
Number of orbits of Aut(Z^7) as function of the infinity norm A000579, A154286, A102860, A002412, A045943, A115067, A008586, A008585, A005843, A000217.
When written as an array, the rows/columns are A000217, A000124, A152948, A152950, A145018, A167499, A166136, A167487... and A000096, A034856, A055998, A046691, A052905, A055999... (with appropriate offsets); cf. analogous lists for A000027 in A185787.
Cf. A000290.
Cf. A061579 (transposed matrix / reversed triangle).
Programs
-
Haskell
a001477 = id a001477_list = [0..] -- Reinhard Zumkeller, May 07 2012
-
Julia
print([n for n in 0:280]) # Paul Muljadi, Apr 15 2024
-
Magma
[ n : n in [0..100]];
-
Maple
[ seq(n,n=0..100) ];
-
Mathematica
Table[n, {n, 0, 100}] (* Stefan Steinerberger, Apr 08 2006 *) LinearRecurrence[{2, -1}, {0, 1}, 77] (* Robert G. Wilson v, May 23 2013 *) CoefficientList[ Series[x/(x - 1)^2, {x, 0, 76}], x] (* Robert G. Wilson v, May 23 2013 *) Range[0,100] (* Harvey P. Dale, Dec 29 2024 *)
-
PARI
A001477(n)=n /* first term is a(0) */
-
Python
def a(n): return n print([a(n) for n in range(78)]) # Michael S. Branicky, Nov 13 2022
Formula
a(n) = n.
a(0) = 0, a(n) = a(n-1) + 1.
G.f.: x/(1-x)^2.
Multiplicative with a(p^e) = p^e. - David W. Wilson, Aug 01 2001
When seen as array: T(k, n) = n + (k+n)*(k+n+1)/2. Main diagonal is 2*n*(n+1) (A046092), antidiagonal sums are n*(n+1)*(n+2)/2 (A027480). - Ralf Stephan, Oct 17 2004
Dirichlet generating function: zeta(s-1). - Franklin T. Adams-Watters, Sep 11 2005
E.g.f.: x*e^x. - Franklin T. Adams-Watters, Sep 11 2005
a(0)=0, a(1)=1, a(n) = 2*a(n-1) - a(n-2). - Jaume Oliver Lafont, May 07 2008
a(n) = Sum_{k>=0} A030308(n,k)*2^k. - Philippe Deléham, Oct 20 2011
a(n+1) = det(C(i+1,j), 1 <= i, j <= n), where C(n,k) are binomial coefficients. - Mircea Merca, Apr 06 2013
a(n-1) = floor(n/e^(1/n)) for n > 0. - Richard R. Forberg, Jun 22 2013
a(n) = A000027(n) for all n>0.
a(n) = floor(cot(1/(n+1))). - Clark Kimberling, Oct 08 2014
a(0)=0, a(n>0) = 2*z(-1)^[( |z|/z + 3 )/2] + ( |z|/z - 1 )/2 for z = A130472(n>0); a 1 to 1 correspondence between integers and naturals. - Adriano Caroli, Mar 29 2015
G.f. as triangle: x*(1 + (x^2 - 5*x + 2)*y + x*(2*x - 1)*y^2)/((1 - x)^3*(1 - x*y)^3). - Stefano Spezia, Jul 22 2025
Comments