A001497 Triangle of coefficients of Bessel polynomials (exponents in decreasing order).
1, 1, 1, 3, 3, 1, 15, 15, 6, 1, 105, 105, 45, 10, 1, 945, 945, 420, 105, 15, 1, 10395, 10395, 4725, 1260, 210, 21, 1, 135135, 135135, 62370, 17325, 3150, 378, 28, 1, 2027025, 2027025, 945945, 270270, 51975, 6930, 630, 36, 1, 34459425, 34459425, 16216200, 4729725, 945945, 135135, 13860, 990, 45, 1
Offset: 0
Examples
Triangle begins 1, 1, 1, 3, 3, 1, 15, 15, 6, 1, 105, 105, 45, 10, 1, 945, 945, 420, 105, 15, 1, 10395, 10395, 4725, 1260, 210, 21, 1, 135135, 135135, 62370, 17325, 3150, 378, 28, 1, 2027025, 2027025, 945945, 270270, 51975, 6930, 630, 36, 1 Production matrix begins 1, 1, 2, 2, 1, 6, 6, 3, 1, 24, 24, 12, 4, 1, 120, 120, 60, 20, 5, 1, 720, 720, 360, 120, 30, 6, 1, 5040, 5040, 2520, 840, 210, 42, 7, 1, 40320, 40320, 20160, 6720, 1680, 336, 56, 8, 1, 362880, 362880, 181440, 60480, 15120, 3024, 504, 72, 9, 1 This is the exponential Riordan array A094587, or [1/(1-x),x], beheaded. - _Paul Barry_, Mar 18 2011
References
- J. Riordan, Combinatorial Identities, Wiley, 1968, p. 77.
Links
- T. D. Noe, Rows n = 0..50 of triangle, flattened
- Peter Bala, Generalized Dobinski formulas
- Paul Barry, Riordan Arrays, Orthogonal Polynomials as Moments, and Hankel Transforms, J. Int. Seq. 14 (2011) # 11.2.2, chapter 8.
- Tom Copeland, A Class of Differential Operators and the Stirling Numbers
- E. Deutsch, L. Ferrari and S. Rinaldi, Production Matrices, Advances in Applied Mathematics, 34 (2005) pp. 101-122.
- O. Frink and H. L. Krall, A new class of orthogonal polynomials, Trans. Amer. Math. Soc. 65,100-115, 1945. [From _Roger L. Bagula_, Feb 15 2009]
- E. Grosswald, Bessel Polynomials, Lecture Notes Math. vol. 698 1978 p. 18.
- Milan Janjic, Some classes of numbers and derivatives, JIS 12 (2009) #09.8.3.
- Wolfdieter Lang, On generalizations of Stirling number triangles, J. Integer Seqs., Vol. 3 (2000), #00.2.4.
- B. Leclerc, Powers of staircase Schur functions and symmetric analogues of Bessel polynomials, Discrete Math., 153 (1996), 213-227.
- Robert S. Maier, Boson Operator Ordering Identities from Generalized Stirling and Eulerian Numbers, arXiv:2308.10332 [math.CO], 2023. See p. 19.
- Toufik Mansour, Matthias Schork and Mark Shattuck, The Generalized Stirling and Bell Numbers Revisited, Journal of Integer Sequences, Vol. 15 (2012), #12.8.3.
- Toufik Mansour, Matthias Schork and Mark Shattuck, On the Stirling numbers associated with the meromorphic Weyl algebra, Applied Mathematics Letters, Volume 25, Issue 11, November 2012, Pages 1767-1771. - From _N. J. A. Sloane_, Sep 15 2012
- W. Mlotkowski and A. Romanowicz, A family of sequences of binomial type, Probability and Mathematical Statistics, Vol. 33, Fasc. 2 (2013), pp. 401-408.
- Mathias Pétréolle and Alan D. Sokal, Lattice paths and branched continued fractions. II. Multivariate Lah polynomials and Lah symmetric functions, arXiv:1907.02645 [math.CO], 2019.
- Feng Qi and Bai-Ni Guo, "Some Properties and Generalizations of the Catalan, Fuss, and Fuss-Catalan Numbers", Mathematical Analysis and Applications : Selected Topics (2018), Wiley, Ch. 5, 101-133.
- Feng Qi, X.-T. Shi and F.-F. Liu, Several formulas for special values of the Bell polynomials of the second kind and applications, Preprint 2015.
- Alexander Stoimenow, On the number of chord diagrams, Discr. Math. 218 (2000), 209-233. Lemma 2.2.
- Eric Weisstein's World of Mathematics, Bessel Polynomial
- Index entries for sequences related to Bessel functions or polynomials
Crossrefs
Programs
-
Haskell
a001497 n k = a001497_tabl !! n !! k a001497_row n = a001497_tabl !! n a001497_tabl = [1] : f [1] 1 where f xs z = ys : f ys (z + 2) where ys = zipWith (+) ([0] ++ xs) (zipWith (*) [z, z-1 ..] (xs ++ [0])) -- Reinhard Zumkeller, Jul 11 2014
-
Magma
/* As triangle */ [[Factorial(2*n-k)/(Factorial(k)*Factorial(n-k)*2^(n-k)): k in [0..n]]: n in [0.. 15]]; // Vincenzo Librandi, Aug 12 2015
-
Maple
f := proc(n) option remember; if n <=1 then (1+x)^n else expand((2*n-1)*x*f(n-1)+f(n-2)); fi; end; row := n -> seq(coeff(f(n), x, n - k), k = 0..n): seq(row(n), n = 0..9);
-
Mathematica
m = 9; Flatten[ Table[(n + k)!/(2^k*k!*(n - k)!), {n, 0, m}, {k, n, 0, -1}]] (* Jean-François Alcover, Sep 20 2011 *) y[n_, x_] := Sqrt[2/(Pi*x)]*E^(1/x)*BesselK[-n-1/2, 1/x]; t[n_, k_] := Coefficient[y[n, x], x, k]; Table[t[n, k], {n, 0, 9}, {k, n, 0, -1}] // Flatten (* Jean-François Alcover, Mar 01 2013 *)
-
PARI
T(k, n) = if(n>k||k<0||n<0,0,(2*k-n)!/(n!*(k-n)!*2^(k-n))) /* Ralf Stephan */
-
PARI
{T(n, k) = if( k<0 || k>n, 0, binomial(n, k)*(2*n-k)!/2^(n-k)/n!)}; /* Michael Somos, Oct 03 2006 */
-
Sage
# uses[bell_matrix from A264428] # Adds a column 1,0,0,0, ... at the left side of the triangle. bell_matrix(lambda n: A001147(n), 9) # Peter Luschny, Jan 19 2016
Formula
a(n, m) = (2*n-m)!/(m!*(n-m)!*2^(n-m)) if n >= m >= 0 else 0 (from Grosswald, p. 7).
a(n, m)= 0, n= m >= 0 (from Grosswald p. 23, (19)).
E.g.f. for m-th column: ((1-sqrt(1-2*x))^m)/(m!*sqrt(1-2*x)).
G.f.: 1/(1-xy-x/(1-xy-2x/(1-xy-3x/(1-xy-4x/(1-.... (continued fraction). - Paul Barry, Jan 29 2009
T(n,k) = if(k<=n, C(2n-k,2(n-k))*(2(n-k)-1)!!,0) = if(k<=n, C(2n-k,2(n-k))*A001147(n-k),0). - Paul Barry, Mar 18 2011
Row polynomials for n>=1 are given by 1/t*D^n(exp(x*t)) evaluated at x = 0, where D is the operator 1/(1-x)*d/dx. - Peter Bala, Nov 25 2011
The matrix product A039683*A008277 gives a signed version of this triangle. Dobinski-type formula for the row polynomials: R(n,x) = (-1)^n*exp(x)*Sum_{k = 0..inf} k*(k-2)*(k-4)*...*(k-2*(n-1))*(-x)^k/k!. Cf. A122850. - Peter Bala, Jun 23 2014
Comments