A001599 Harmonic or Ore numbers: numbers k such that the harmonic mean of the divisors of k is an integer.
1, 6, 28, 140, 270, 496, 672, 1638, 2970, 6200, 8128, 8190, 18600, 18620, 27846, 30240, 32760, 55860, 105664, 117800, 167400, 173600, 237510, 242060, 332640, 360360, 539400, 695520, 726180, 753480, 950976, 1089270, 1421280, 1539720
Offset: 1
Examples
k=140 has sigma_0(140)=12 divisors with sigma_1(140)=336. The average divisor is 336/12=28, an integer, and divides k: k=5*28, so 140 is in the sequence. k=496 has sigma_0(496)=10, sigma_1(496)=992: the average divisor 99.2 is not an integer, but k/(sigma_1/sigma_0)=496/99.2=5 is an integer, so 496 is in the sequence.
References
- G. L. Cohen and Deng Moujie, On a generalization of Ore's harmonic numbers, Nieuw Arch. Wisk. (4), 16 (1998) 161-172.
- Richard K. Guy, Unsolved Problems in Number Theory, 3rd edition, Springer, 2004, Section B2, pp. 74-75.
- W. H. Mills, On a conjecture of Ore, Proc. Number Theory Conf., Boulder CO, 1972, 142-146.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, page 147.
Links
- Robert G. Wilson v, Table of n, a(n) for n = 1..937 (terms n = 1..170 from T. D. Noe and Klaus Brockhaus)
- Marco Abrate, Stefano Barbero, Umberto Cerruti, and Nadir Murru, The Biharmonic mean, arXiv:1601.03081 [math.NT], 2016.
- Abiodun E. Adeyemi, A Study of @-numbers, arXiv:1906.05798 [math.NT], 2019.
- Ivan Borysiuk, Conjectured to be the 10000 smallest Ore numbers
- Graeme L. Cohen, Email to N. J. A. Sloane, Apr. 1994.
- Graeme L. Cohen, Numbers whose positive divisors have small integral harmonic mean, Mathematics of Computation, Vol. 66, No. 218, (1997), pp. 883-891.
- Graeme L. Cohen and Ronald M. Sorli, Harmonic seeds, Fibonacci Quart., Vol. 36, No. 5 (1998), pp. 386-390; errata, 39 (2001) 4.
- Graeme L. Cohen and Ronald M. Sorli, Odd harmonic numbers exceed 10^24, Math. Comp., Vol. 79, No. 272 (2010), pp. 2451-2460.
- Mariano Garcia, On numbers with integral harmonic mean, Amer. Math. Monthly, Vol. 61, No. 2 (1954), pp. 89-96.
- Takeshi Goto, All harmonic numbers less than 10^14.
- Takeshi Goto, Table of a(n) for n = 1..937.
- T. Goto and S. Shibata, All numbers whose positive divisors have integral harmonic mean up to 300, Math. Comput., Vol. 73, No. 245 (2004), pp. 475-491.
- Richard K. Guy, Letter to N. J. A. Sloane with attachment, Jun. 1991.
- Hans-Joachim Kanold, Über das harmonische Mittel der Teiler einer natürlichen Zahl, Math. Ann., Vol. 133 (1957), pp. 371-374.
- Oystein Ore, On the averages of the divisors of a number, Amer. Math. Monthly, Vol. 55, No. 10 (1948), pp. 615-619.
- Oystein Ore, On the averages of the divisors of a number. (annotated scanned copy)
- Carl Pomerance, On a Problem of Ore: Harmonic Numbers, unpublished manuscript, 1973; abstract *709-A5, Notices of the American Mathematical Society, Vol. 20, 1973, page A-648, entire volume.
- Eric Weisstein's World of Mathematics, Harmonic Mean.
- Eric Weisstein's World of Mathematics, Harmonic Divisor Number.
- Wikipedia, Harmonic mean.
- Wikipedia, Harmonic divisor number.
- Andreas and Eleni Zachariou, Perfect, semi-perfect and Ore numbers, Bull. Soc. Math. Grèce (New Ser.), Vol. 13, No. 13A (1972), pp. 12-22; alternative link.
- Index entries for sequences where any odd perfect numbers must occur
Crossrefs
Programs
-
GAP
Concatenation([1],Filtered([2,4..2000000],n->IsInt(n*Tau(n)/Sigma(n)))); # Muniru A Asiru, Nov 26 2018
-
Haskell
import Data.Ratio (denominator) import Data.List (genericLength) a001599 n = a001599_list !! (n-1) a001599_list = filter ((== 1) . denominator . hm) [1..] where hm x = genericLength ds * recip (sum $ map (recip . fromIntegral) ds) where ds = a027750_row x -- Reinhard Zumkeller, Jun 04 2013, Jan 20 2012
-
Maple
q:= (p,k) -> p^k*(p-1)*(k+1)/(p^(k+1)-1): filter:= proc(n) local t; mul(q(op(t)),t=ifactors(n)[2])::integer end proc: select(filter, [$1..10^6]); # Robert Israel, Jan 14 2016
-
Mathematica
Do[ If[ IntegerQ[ n*DivisorSigma[0, n]/ DivisorSigma[1, n]], Print[n]], {n, 1, 1550000}] Select[Range[1600000],IntegerQ[HarmonicMean[Divisors[#]]]&] (* Harvey P. Dale, Oct 20 2012 *)
-
PARI
a(n)=if(n<0,0,n=a(n-1);until(0==(sigma(n,0)*n)%sigma(n,1),n++);n) /* Michael Somos, Feb 06 2004 */
-
Python
from sympy import divisor_sigma as sigma def ok(n): return (n*sigma(n, 0))%sigma(n, 1) == 0 print([n for n in range(1, 10**4) if ok(n)]) # Michael S. Branicky, Jan 06 2021
-
Python
from itertools import count, islice from functools import reduce from math import prod from sympy import factorint def A001599_gen(startvalue=1): # generator of terms >= startvalue for n in count(max(startvalue,1)): f = factorint(n) s = prod((p**(e+1)-1)//(p-1) for p, e in f.items()) if not reduce(lambda x,y:x*y%s,(e+1 for e in f.values()),1)*n%s: yield n A001599_list = list(islice(A001599_gen(),20)) # Chai Wah Wu, Feb 14 2023
Formula
{ k : A106315(k) = 0 }. - R. J. Mathar, Jan 25 2017
Extensions
More terms from Klaus Brockhaus, Sep 18 2001
Comments