cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A001793 a(n) = n*(n+3)*2^(n-3).

Original entry on oeis.org

1, 5, 18, 56, 160, 432, 1120, 2816, 6912, 16640, 39424, 92160, 212992, 487424, 1105920, 2490368, 5570560, 12386304, 27394048, 60293120, 132120576, 288358400, 627048448, 1358954496, 2936012800, 6325010432, 13589544960, 29125246976
Offset: 1

Views

Author

Keywords

Comments

Coefficients of Chebyshev T polynomials: the subdiagonal A053120(n+3, n-1), for n > = 1. [rewritten by Wolfdieter Lang, Nov 25 2019]
Number of 132-avoiding permutations of [n+3] containing exactly two 123 patterns. - Emeric Deutsch, Jul 13 2001
Number of Dyck paths of semilength n+2 having pyramid weight n+1 (for pyramid weight see Denise and Simion). Example: a(2)=5 because the Dyck paths of semilength 4 having pyramid weight 3 are: (ud)u(ud)(ud)d, u(ud)(ud)d(ud), u(ud)(ud)(ud)d, u(ud)(uudd)d and u(uudd)(ud)d [here u=(1,1), d=(1,-1) and the maximal pyramids, of total length 3, are shown between parentheses]. - Emeric Deutsch, Mar 10 2004
a(n) is the number of dissections of a regular (n+3)-gon using n-1 noncrossing diagonals such that every piece of the dissection contains at least one non-base side of the (n+3)-gon. (One side of the (n+3)-gon is designated the base.) - David Callan, Mar 23 2004
If X_1,X_2,...,X_n are 2-blocks of a (2n+1)-set X then a(n) is the number of (n+2)-subsets of X intersecting each X_i, (i=1..n). - Milan Janjic, Nov 18 2007
The second corrector line for transforming 2^n offset 0 with a leading 1 into the Fibonacci sequence. - Al Hakanson (hawkuu(AT)gmail.com), Jun 01 2009
Sum of all nodes of all integer compositions of n, see example. - Olivier Gérard, Oct 22 2011
Number of compositions of 2n with exactly two odd summands (see example). - Mamuka Jibladze, Sep 04 2013
4*a(n) is the number of North-East paths from (0,0) to (n+2,n+2) with exactly two east steps below y = x-1 or above y = x+1. It is related to paired pattern P_1 and P_6 in Pan and Remmel's link. - Ran Pan, Feb 04 2016
From Paul Weisenhorn, Oct 18 2019: (Start)
The polynomials S(n,x)= Sum_(k>=1) b(n,k)*x^k has the recurrence relation S(n+2,x)=2*S(n+1,x))-x*S(n) with S(1,x)=1, S(2,x)=2-x and are generated by the coefficients b(n,k). b(n,k) is defined by b(n,k)=Sum_(j=1..k) binomials(k+1,j)*b(n-j,k) or by b(n,k)=((n-2+k)!*(n-1+2k)*2^n)/(4*(n-1)!*k!). b(n,1)=A001792, b(n,2)=A001793, b(n,3)=A001794, b(n,4)=A006974, b(n,5)=A006975, b(n,6)=A006976, b(n,7)=A209404.
The general formula for the sequences with k>=1: a(n)=((n-2+k)!*(n-1+2k)*2^n)/(4*(n-1)!*k!) with n >= 1. (End) [See a comment in A053120 on subdiagonal sequences. - Wolfdieter Lang, Jan 03 2020]

Examples

			a(2)=5 since 32415, 32451, 34125, 42135 and 52134 are the only 132-avoiding permutations of 12345 containing exactly two increasing subsequences of length 3.
a(4)=56: the compositions of 4 are 4, 3+1, 1+3, 2+2, 2+1+1, 1+2+1, 1+1+2, 1+1+1+1, the corresponding nodes (partial sums) are {0, 4}, {0, 3, 4}, {0, 1, 4}, {0, 2, 4}, {0, 2, 3, 4}, {0, 1, 3, 4}, {0, 1, 2, 4}, {0, 1, 2, 3, 4}, with individual sums {4, 7, 5, 6, 9, 8, 7, 10} and total 56. - _Olivier Gérard_, Oct 22 2011
The a(3)=18 compositions of 2*3=6 with two odd summands are 5+1, 1+5, 3+3, 4+1+1, 1+4+1, 1+1+4, 3+2+1, 3+1+2, 2+3+1, 2+1+3, 1+3+2, 1+2+3, 2+2+1+1, 2+1+2+1, 2+1+1+2, 1+2+2+1, 1+2+1+2, 1+1+2+2. - _Mamuka Jibladze_, Sep 04 2013
		

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 795.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

a(n) = A039991(n+3, 4) = A055252(n, 1).
Cf. A053120.

Programs

Formula

G.f.: x*(1-x)/(1-2*x)^3. Binomial transform of squares [1, 4, 9, ...].
a(n) = Sum_{k=0..floor((n+4)/2)} C(n+4, 2k)*C(k, 2). - Paul Barry, May 15 2003
With two leading zeros, binomial transform of quarter-squares A002620. - Paul Barry, May 27 2003
a(n) = Sum_{k=0..n+2} C(n+2, k) * floor(k^2/4). - Paul Barry, May 27 2003
a(n) = Sum_{i=0..j} binomial(i+1, 2)*binomial(j, i). - Jon Perry, Feb 26 2004
With one leading zero, binomial transform of triangular numbers A000217. - Philippe Deléham, Aug 02 2005
a(n) = Sum_{k=0..n+1} (-1)^(n-k+1)*C(k, n-k+1)*k*C(2k, k)/2. - Paul Barry, Oct 07 2005
Left-shifted sequence is binomial transform of left-shifted squares (A000290). - Franklin T. Adams-Watters, Nov 29 2006
Binomial transform of a(n) = n^2 offset 1. a(3)=18. - Al Hakanson (hawkuu(AT)gmail.com), Jun 01 2009
a(n) = (1/n) * Sum_{k=0..n} binomial(n,k)*k^3. - Gary Detlefs, Nov 26 2011
For n > 1, a(n) = Sum_{k=0..n-1} Sum_{i=0..n} (k+2) * C(n-2,i). - Wesley Ivan Hurt, Sep 20 2017
a(n) = a(-3-n)*2^(2*n+3), a(n)*(n+3) = -A058645(-3-n)*2^(2*n+3) for all n in Z. - Michael Somos, Apr 19 2019
E.g.f.: (1/2)*exp(2*x)*x*(2 + x). - Stefano Spezia, Aug 17 2019
From Amiram Eldar, Jan 05 2022: (Start)
Sum_{n>=1} 1/a(n) = 128/9 - 56*log(2)/3.
Sum_{n>=1} (-1)^(n+1)/a(n) = 24*log(3/2) - 80/9. (End)