A001859 Triangular numbers plus quarter-squares: n*(n+1)/2 + floor((n+1)^2/4) (i.e., A000217(n) + A002620(n+1)).
0, 2, 5, 10, 16, 24, 33, 44, 56, 70, 85, 102, 120, 140, 161, 184, 208, 234, 261, 290, 320, 352, 385, 420, 456, 494, 533, 574, 616, 660, 705, 752, 800, 850, 901, 954, 1008, 1064, 1121, 1180, 1240, 1302, 1365, 1430, 1496, 1564, 1633, 1704, 1776, 1850, 1925
Offset: 0
Examples
For n=1 we find 2 planted trees with 8 nodes, 3 of which are internal (i) and 5 are endpoints (e): .e...e...e...e....e...e.... ...i.......i........i...e.. .......i..............i...e .......e................i.. ........................e.. G.f. = 2*x + 5*x^2 + 10*x^3 + 16*x^4 + 24*x^5 + 33*x^6 + 44*x^7 + 56*x^8 + ...
References
- John Riordan, personal communication.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- T. D. Noe, Table of n, a(n) for n = 0..1000
- D. D. Frey and J. A. Sellers, Jacobsthal Numbers and Alternating Sign Matrices, J. Integer Seqs., Vol. 3 (2000), #00.2.3
- S. V. Gervacio and H. Maehara, Partial order on a family of k-subsets of a linearly ordered set, Discr. Math., 306 (2006), 413-419.
- Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
- Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992
- J. Riordan, Letter to N. J. A. Sloane, Oct. 1970
- S. G. Wagner, An identity for the cycle indices of rooted tree automorphism groups, Elec. J. Combinat., 13 (2006), #R00.
- Index entries for sequences related to rooted trees.
- Index entries for sequences related to trees.
- Index entries for linear recurrences with constant coefficients, signature (2,0,-2,1).
Crossrefs
Programs
-
Haskell
a001859 n = a000217 n + a002620 (n + 1) -- Reinhard Zumkeller, Dec 20 2012
-
Maple
A001859:=(-1-z^2-2*z^3+z^4)/(z+1)/(z-1)^3; # conjectured by Simon Plouffe in his 1992 dissertation; gives sequence with an additional leading 1 with (combinat):seq(count(Partition((3*n+2)), size=3), n=0..50); # Zerinvary Lajos, Mar 28 2008
-
Mathematica
With[{nn=60},Total/@Thread[{Accumulate[Range[0,nn]],Floor[Range[ nn+1]^2/4]}]] (* or *) LinearRecurrence[{2,0,-2,1},{0,2,5,10},60] (* Harvey P. Dale, Apr 01 2012 *)
-
PARI
{a(n) = n + (3*n^2 + 1) \ 4};
Formula
a(n) = n + floor( (3n^2+1)/4 ).
G.f.: (2*x+x^2)/((1-x)^2*(1-x^2)).
a(n) = a(n-1) + a(n-2) - a(n-3) + 3 = A002378(n) - A002620(n) = A006578(n-1) + A004526(n+1) - Henry Bottomley, Mar 08 2000
a(n) = A006578(-1-n) for all n in Z. - Michael Somos, May 10 2006
From Mitch Harris, Aug 22 2006: (Start)
a(n) = (6n^2 + 8n + 1 - (-1)^n)/8;
a(n) = Sum_{k=0..n} max(k, n-k). (End)
Starting (2, 5, 10, 16, 24, ...), = binomial transform of [2, 3, 2, -1, 2, -4, 8, -16, 32, ...]. - Gary W. Adamson, Nov 30 2007
a(0)=0, a(1)=2, a(2)=5, a(3)=10, a(n) = 2*a(n-1) + 0*a(n-2) - 2*a(n-3) + a(n-4). - Harvey P. Dale, Apr 01 2012
a(n) = 3*n*(n+1)/2 - A006578(n). - Clark Kimberling, Jul 02 2012
0 = -6 + a(n) - 2*a(n+2) + a(n+4) for all n in Z. - Michael Somos, Nov 03 2014
0 = a(n)*(+a(n+1) - a(n+2)) + a(n+1)*(-3 - a(n+1) + a(n+2)) for all n in Z. - Michael Somos, Nov 03 2014
a(n) = Sum_{k=1..n} floor((n+k+2)/2). - Wesley Ivan Hurt, Mar 31 2017
Sum_{n>=1} 1/a(n) = 3/4 - Pi/(4*sqrt(3)) + 3*log(3)/4. - Amiram Eldar, May 28 2022
E.g.f.: (x*(7 + 3*x)*cosh(x) + (1 + 7*x + 3*x^2)*sinh(x))/4. - Stefano Spezia, Aug 22 2023
Extensions
Entry improved by Michael Somos
Comments