A001891 Hit polynomials; convolution of natural numbers with Fibonacci numbers F(2), F(3), F(4), ....
0, 1, 4, 10, 21, 40, 72, 125, 212, 354, 585, 960, 1568, 2553, 4148, 6730, 10909, 17672, 28616, 46325, 74980, 121346, 196369, 317760, 514176, 831985, 1346212, 2178250, 3524517, 5702824, 9227400, 14930285, 24157748, 39088098, 63245913, 102334080, 165580064
Offset: 0
References
- J. Riordan, The enumeration of permutations with three-ply staircase restrictions, unpublished memorandum, Bell Telephone Laboratories, Murray Hill, NJ, Oct 1963. (See A001883)
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
- Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992
- N. J. A. Sloane, Annotated copy of Riordan's Three-Ply Staircase paper (unpublished memorandum, Bell Telephone Laboratories, Murray Hill, NJ, Oct 1963)
- Index entries for linear recurrences with constant coefficients, signature (3,-2,-1,1).
Crossrefs
Programs
-
GAP
List([0..40], n-> Fibonacci(n+5) -2*n-5); # G. C. Greubel, Jul 06 2019
-
Magma
[Fibonacci(n+5)-(5+2*n): n in [0..40]]; // Vincenzo Librandi, Jun 07 2013
-
Mathematica
LinearRecurrence[{3,-2,-1,1}, {0,1,4,10}, 40] (* Vladimir Joseph Stephan Orlovsky, Feb 16 2012 *) Table[Fibonacci[n+5] -(2*n+5), {n,0,40}] (* G. C. Greubel, Jul 06 2019 *) maxDiff = 2; Map[Length[Select[Map[{#, Max[Differences[#]]} &, Drop[Subsets[Range[#]], # + 1]], #[[2]] <= maxDiff &]] &, Range[16]] (* Peter J. C. Moses, Aug 14 2022 *)
-
PARI
a(n)=([0,1,0,0; 0,0,1,0; 0,0,0,1; 1,-1,-2,3]^n*[0;1;4;10])[1,1] \\ Charles R Greathouse IV, Apr 08 2016
-
Sage
[fibonacci(n+5) -2*n-5 for n in (0..40)] # G. C. Greubel, Jul 06 2019
Formula
G.f.: x*(1+x)/((1-x-x^2)*(1-x)^2). - Simon Plouffe in his 1992 dissertation
a(n) = Fibonacci(n+5) - (5+2*n). - Wolfdieter Lang
a(n) = a(n-1) + a(n-2) + (2n+1); a(-x)=0. - Barry E. Williams, Mar 27 2000
a(n) = 3*a(n-1) - 2*a(n-2) - a(n-3) + a(n-4). - Sam Lachterman (slachterman(AT)fuse.net), Sep 22 2003
a(n) - a(n-1) = A101220(2,1,n). - Ross La Haye, May 31 2006
a(n) = (-3 + (2^(-1-n)*((1-sqrt(5))^n*(-11+5*sqrt(5)) + (1+sqrt(5))^n*(11+5*sqrt(5)))) / sqrt(5) - 2*(1+n)). - Colin Barker, Mar 11 2017
Comments