A001921 a(n) = 14*a(n-1) - a(n-2) + 6 for n>1, a(0)=0, a(1)=7.
0, 7, 104, 1455, 20272, 282359, 3932760, 54776287, 762935264, 10626317415, 148005508552, 2061450802319, 28712305723920, 399910829332567, 5570039304932024, 77580639439715775, 1080558912851088832, 15050244140475527879, 209622859053806301480
Offset: 0
Examples
G.f. = 7*x + 104*x^2 + 1455*x^3 + 20272*x^4 + 282359*x^5 + 3932760*x^6 + ... - _Michael Somos_, Aug 17 2018
References
- J. D. E. Konhauser et al., Which Way Did the Bicycle Go?, MAA 1996, p. 104.
- E.-A. Majol, Note #2228, L'Intermédiaire des Mathématiciens, 9 (1902), pp. 183-185. - N. J. A. Sloane, Mar 03 2022
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- T. D. Noe, Table of n, a(n) for n = 0..200
- J. Brenner and E. P. Starke, Problem E702, Amer. Math. Monthly, 53 (1946), 465.
- Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
- Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992
- Eric Weisstein's World of Mathematics, Hex Number
- Index entries for linear recurrences with constant coefficients, signature (15,-15,1).
Crossrefs
Programs
-
Magma
[Round(-1/2 - (1/6)*Sqrt(3)*(7-4*Sqrt(3))^n + (1/6)*Sqrt(3)*(7+4*Sqrt(3))^n + (1/4)*(7+4*Sqrt(3))^n + (1/4)*(7-4*Sqrt(3))^n): n in [0..50]]; // G. C. Greubel, Nov 04 2017
-
Maple
A001921:=z*(-7+z)/(z-1)/(z**2-14*z+1); # Conjectured by Simon Plouffe in his 1992 dissertation.
-
Mathematica
t = {0, 7}; Do[AppendTo[t, 14*t[[-1]] - t[[-2]] + 6], {20}]; t (* T. D. Noe, Aug 17 2012 *) LinearRecurrence[{15, -15, 1}, {0, 7, 104}, 19] (* Michael De Vlieger, Jan 02 2017 *) a[ n_] := -1/2 + (ChebyshevT[n + 1, 7] - ChebyshevT[n, 7]) / 12; (* Michael Somos, Aug 17 2018 *)
-
PARI
concat(0, Vec(x*(x-7)/((x-1)*(x^2-14*x+1)) + O(x^100))) \\ Colin Barker, Jan 06 2015
-
PARI
{a(n) = -1/2 + (polchebyshev(n + 1, 1, 7) - polchebyshev(n, 1, 7)) / 12}; /* Michael Somos, Aug 17 2018 */
Formula
G.f.: x*(-7 + x)/(x - 1)/(x^2 - 14*x + 1) (see Simon Plouffe in Maple section).
a(n) = (A028230(n+1)-1)/2. - R. J. Mathar, Mar 19 2009
a(n) = 15*a(n-1) - 15*a(n-2) + a(n-3). - Colin Barker, Jan 06 2015
a(n) = -1 - a(-1-n) for all n in Z. - Michael Somos, Aug 17 2018
Extensions
More terms from James Sellers, Jul 04 2000
Comments