cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A001945 a(n+6) = -a(n+5) + a(n+4) + 3a(n+3) + a(n+2) - a(n+1) - a(n). a(n) = sign(n) if abs(n)<=3.

Original entry on oeis.org

0, 1, 1, 1, 5, 1, 7, 8, 5, 19, 11, 23, 35, 27, 64, 61, 85, 137, 133, 229, 275, 344, 529, 599, 875, 1151, 1431, 2071, 2560, 3481, 4697, 5953, 8245, 10649, 14111, 19048, 24605, 33227, 43739, 57591, 77275, 101107, 134848, 178709, 235405, 314089, 413909
Offset: 0

Views

Author

Keywords

Comments

It seems likely that this sequence contains infinitely many primes. In the paper by Einsiedler, Everest, Ward the heuristics for the Mersenne sequence are adapted to argue that approximately c*log(N) of the first N terms should be prime, where c is constant. Numerical evidence is provided to support this. - Graham Everest (g.everest(AT)uea.ac.uk), Mar 01 2001
For n>=4 a(n-4) is the resultant of the polynomials x^3-x-1 and x^(n+1)-x^n-1. For n=4 in fact the result is 0 as we see from the identity x^5-x^4-1=(x^3-x-1)(x^2-x+1). The characteristic polynomial of the sequence is x^6+x^5-x^4-3x^3-x^2+x+1 = (x^3-x-1)*(x^3+x^2-1). - Richard Choulet, Aug 14 2007
From Peter Bala, Sep 15 2019: (Start)
This is a linear divisibility sequence of order 6. It is a particular case of a family of divisibility sequences studied by Roettger et al. The o.g.f. has the form x*d/dx(f(x)/(x^3*f(1/x))) where f(x) = x^3 - x - 1.
More generally, if f(x) = 1 + P*x + Q*x^2 + x^3 or f(x) = -1 + P*x + Q*x^2 + x^3, where P and Q are integers, then the rational function x*d/dx(f(x)/(x^3*f(1/x))) is the generating function for a linear divisibility sequence of order 6. Cf. A001351. There are corresponding results when f(x) is a monic quartic polynomial with constant term 1. (End)
Resultant of the (s_3, s_3+n) pair where s_n(X) is X^n-X-1. See Rush link. - Michel Marcus, Sep 30 2019

Examples

			G.f. = x + x^2 + x^3 + 5*x^4 + x^5 + 7*x^6 + 8*x^7 + 5*x^8 + 19*x^9 + ...
		

References

  • G. Everest, T. Ward, Heights of Polynomials and Entropy in Algebraic Dynamics, Springer, London, 1999.
  • M. Hall, A slowly increasing arithmetic sequence, J. London Math. Soc., 8 (1933), 162-166.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Haskell
    import Data.List (zipWith6)
    a001945 n = a001945_list !! n
    a001945_list = 0 : 1 : 1 : 1 : 5 : 1 : zipWith6
       (\u v w x y z -> - u + v + 3*w + x - y - z)
         (drop 5 a001945_list) (drop 4 a001945_list) (drop 3 a001945_list)
         (drop 2 a001945_list) (drop 1 a001945_list) (drop 0 a001945_list)
    -- Reinhard Zumkeller, Jan 11 2012
    
  • Maple
    A001945:=z*(1+2*z+z**2+2*z**3+z**4)/(z**3-z-1)/(z**3+z**2-1); # conjectured by Simon Plouffe in his 1992 dissertation
  • Mathematica
    a[0] = 0; a[1] = a[2] = a[3] = a[5] = 1; a[4] = 5; a[n_] := a[n] = -a[n - 1] + a[n - 2] + 3a[n - 3] + a[n - 4] - a[n - 5] - a[n - 6]; Table[ a[n], {n, 0, 46}] (* Robert G. Wilson v, Mar 10 2005 *)
    LinearRecurrence[{-1, 1, 3, 1, -1, -1}, {0, 1, 1, 1, 5, 1}, 50] (* T. D. Noe, Jan 11 2012 *)
    a[ n_] := Sign[n] SeriesCoefficient[ x * (1 + 2 x + x^2 + 2 x^3 + x^4) / (1 + x - x^2 - 3 x^3 - x^4 + x^5 + x^6), {x, 0, Abs @ n}]; (* Michael Somos, Apr 25 2014 *)
  • PARI
    {a(n) = sign(n) * polcoeff( x * (1 + 2*x + x^2 + 2*x^3 + x^4) / (1 + x - x^2 - 3*x^3 - x^4 + x^5 + x^6) + x * O(x^abs(n)), abs(n))}; /* Michael Somos, Apr 25 2014 */
    
  • PARI
    a(n)=([0,1,0,0,0,0; 0,0,1,0,0,0; 0,0,0,1,0,0; 0,0,0,0,1,0; 0,0,0,0,0,1; -1,-1,1,3,1,-1]^n*[0;1;1;1;5;1])[1,1] \\ Charles R Greathouse IV, Jul 19 2016
    
  • PARI
    L3(n) = polsym(x^3-x-1, n)[n+1]; \\ A001608
    a(n) = my(L3n=L3(n)); L3n - matdet([L3n, L3(2*n);1, L3n])/2; \\ Michel Marcus, Sep 30 2019

Formula

G.f.: (x^5+2x^4+x^3+2x^2+x)/(x^6+x^5-x^4-3x^3-x^2+x+1). - Ralf Stephan, Dec 15 2002
a(n) ~ r1^n-2*real(r2^n), with r1=1.324717957 the inverse real root of x^3+x^2-1=0 and r2=(0.87744+0.7448617i) one inverse complex root of x^3-x-1=0. With n>9, a(n) = round(r1^n-2*real(r2^n)). - Ralf Stephan, Dec 17 2002
a(n) = A001608(n) + A078712(n). - Ralf Stephan, Dec 27 2002
a(A104499(n+1)) = A204138(n). - Reinhard Zumkeller, Jan 11 2012
a(-n) = -a(n). - Michael Somos, Apr 25 2014
a(n) = (alpha^n - 1)*(beta^n - 1)*(gamma^n - 1) where alpha, beta and gamma are the zeros of x^3 - x - 1. - Peter Bala, Sep 15 2019

Extensions

More terms from James Sellers, Dec 23 1999