A002265 Nonnegative integers repeated 4 times.
0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 6, 6, 6, 6, 7, 7, 7, 7, 8, 8, 8, 8, 9, 9, 9, 9, 10, 10, 10, 10, 11, 11, 11, 11, 12, 12, 12, 12, 13, 13, 13, 13, 14, 14, 14, 14, 15, 15, 15, 15, 16, 16, 16, 16, 17, 17, 17, 17, 18, 18, 18, 18, 19, 19, 19, 19
Offset: 0
References
- V. Cizek, Discrete Fourier Transforms and their Applications, Adam Hilger, Bristol 1986, p. 61.
Links
- Todd Silvestri, Table of n, a(n) for n = 0..999
- J. H. McClellan and T. W. Parks, Eigenvalue and Eigenvector Decomposition of the Discrete Fourier Transform, IEEE Trans. Audio and Electroacoust., Vol. AU-20, No. 1, March 1972, pp. 66-74.
- Index entries for linear recurrences with constant coefficients, signature (1,0,0,1,-1).
Crossrefs
Programs
-
Magma
[Floor(n/4): n in [0..80]]; // Vincenzo Librandi, Oct 28 2014
-
Maple
A002265:=n->floor(n/4); seq(A002265(n), n=0..100); # Wesley Ivan Hurt, Dec 10 2013
-
Mathematica
Table[Floor[n/4], {n, 0, 100}] (* Wesley Ivan Hurt, Dec 10 2013 *) Table[{n,n,n,n},{n,0,20}]//Flatten (* Harvey P. Dale, Aug 08 2020 *)
-
PARI
a(n)=n\4 \\ Charles R Greathouse IV, Dec 10 2013
-
Python
def A002265(n): return n>>2 # Chai Wah Wu, Jul 27 2022
-
Sage
[floor(n/4) for n in range(0,84)] # Zerinvary Lajos, Dec 02 2009
Formula
a(n) = floor(n/4), n>=0;
G.f.: (x^4)/((1-x)*(1-x^4)).
a(n) = (2*n-(3-(-1)^n-2*(-1)^floor(n/2)))/8; also a(n) = (2*n-(3-(-1)^n-2*sin(Pi/4*(2*n+1+(-1)^n))))/8 = (n-A010873(n))/4. - Hieronymus Fischer, May 29 2007
a(n) = (1/4)*(n-(3-(-1)^n-2*(-1)^((2*n-1+(-1)^n)/4))/2). - Hieronymus Fischer, Jul 04 2007
a(n) = floor((n^4-1)/4*n^3) (n>=1); a(n) = floor((n^4-n^3)/(4*n^3-3*n^2)) (n>=1). - Mohammad K. Azarian, Nov 08 2007 and Aug 01 2009
For n>=4, a(n) = floor( log_4( 4^a(n-1) + 4^a(n-2) + 4^a(n-3) + 4^a(n-4) ) ). - Vladimir Shevelev, Jun 22 2010
a(n) = A180969(2,n). - Adriano Caroli, Nov 26 2010
a(n) = ceiling((n-3)/4), n >= 0. - Wesley Ivan Hurt, Jun 01 2013
a(n) = (2*n + (-1)^n + 2*sin(Pi*n/2) + 2*cos(Pi*n/2) - 3)/8. - Todd Silvestri, Oct 27 2014
E.g.f.: (x/4 - 3/8)*exp(x) + exp(-x)/8 + (sin(x)+cos(x))/4. - Robert Israel, Oct 30 2014
a(n) = a(n-1) + a(n-4) - a(n-5) with initial values a(3)=0, a(4)=1, a(5)=1, a(6)=1, a(7)=1. - David Neil McGrath, Dec 04 2014
From Guenther Schrack, May 03 2019: (Start)
a(n) = (2*n - 3 + (-1)^n + 2*(-1)^(n*(n-1)/2))/8.
a(n) = a(n-4) + 1, a(k)=0 for k=0,1,2,3, for n > 3. (End)
Comments