A002266 Integers repeated 5 times.
0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 9, 9, 9, 9, 9, 10, 10, 10, 10, 10, 11, 11, 11, 11, 11, 12, 12, 12, 12, 12, 13, 13, 13, 13, 13, 14, 14, 14, 14, 14, 15, 15, 15, 15, 15, 16, 16, 16
Offset: 0
Links
- Index entries for linear recurrences with constant coefficients, signature (1,0,0,0,1,-1).
Crossrefs
Programs
-
Haskell
a002266 = (`div` 5) a002266_list = [0,0,0,0,0] ++ map (+ 1) a002266_list -- Reinhard Zumkeller, Nov 27 2012
-
Maple
A002266:=n->floor(n/5); seq(A002266(n), n=0..100); # Wesley Ivan Hurt, Dec 10 2013
-
Mathematica
Table[Floor[n/5], {n,0,20}] (* Wesley Ivan Hurt, Dec 10 2013 *) Table[{n,n,n,n,n},{n,0,20}]//Flatten (* Harvey P. Dale, Jun 17 2022 *)
-
PARI
a(n)=n\5 \\ Charles R Greathouse IV, Dec 10 2013
-
Python
def A002266(n): return n//5 # Chai Wah Wu, Nov 08 2022
-
Sage
[floor(n/5) - 1 for n in range(5,88)] # Zerinvary Lajos, Dec 01 2009
Formula
a(n) = floor(n/5), n >= 0.
G.f.: x^5/((1-x)(1-x^5)).
a(n) = (n - A010874(n))/5. - Hieronymus Fischer, May 29 2007
For n >= 5, a(n) = floor(log_5(5^a(n-1) + 5^a(n-2) + 5^a(n-3) + 5^a(n-4) + 5^a(n-5))). - Vladimir Shevelev, Jun 22 2010
Sum_{n>=5} (-1)^(n+1)/a(n) = log(2) (A002162). - Amiram Eldar, Sep 30 2022
Extensions
Incorrect formula removed by Ridouane Oudra, Oct 16 2021
Comments