A130520 a(n) = Sum_{k=0..n} floor(k/5). (Partial sums of A002266.)
0, 0, 0, 0, 0, 1, 2, 3, 4, 5, 7, 9, 11, 13, 15, 18, 21, 24, 27, 30, 34, 38, 42, 46, 50, 55, 60, 65, 70, 75, 81, 87, 93, 99, 105, 112, 119, 126, 133, 140, 148, 156, 164, 172, 180, 189, 198, 207, 216, 225, 235, 245, 255, 265, 275, 286, 297, 308, 319, 330, 342, 354, 366
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..10000
- Index entries for linear recurrences with constant coefficients, signature (2,-1,0,0,1,-2,1).
Programs
-
GAP
List([0..70], n-> Int((n-1)*(n-2)/10)); # G. C. Greubel, Aug 31 2019
-
Magma
[Round(n*(n-3)/10): n in [0..70]]; // Vincenzo Librandi, Jun 25 2011
-
Maple
seq(floor((n-1)*(n-2)/10), n=0..70); # G. C. Greubel, Aug 31 2019
-
Mathematica
Accumulate[Floor[Range[0,70]/5]] (* Harvey P. Dale, May 25 2016 *)
-
PARI
a(n) = sum(k=0, n, k\5); \\ Michel Marcus, May 13 2016
-
Sage
[floor((n-1)*(n-2)/10) for n in (0..70)] # G. C. Greubel, Aug 31 2019
Formula
a(n) = floor(n/5)*(2*n - 3 - 5*floor(n/5))/2.
G.f.: x^5/((1-x^5)*(1-x)^2) = x^5/( (1+x+x^2+x^3+x^4)*(1-x)^3 ).
a(n) = floor((n-1)*(n-2)/10). - Mitch Harris, Sep 08 2008
a(n) = round(n*(n-3)/10) = ceiling((n+1)*(n-4)/10) = round((n^2 - 3*n - 1)/10). - Mircea Merca, Nov 28 2010
a(n) = A008732(n-5), n > 4. - R. J. Mathar, Nov 22 2008
a(n) = a(n-5) + n - 4, n > 4. - Mircea Merca, Nov 28 2010
a(5n) = A000566(n), a(5n+1) = A005476(n), a(5n+2) = A005475(n), a(5n+3) = A147875(n), a(5n+4) = A028895(n). - Philippe Deléham, Mar 26 2013
From Amiram Eldar, Sep 17 2022: (Start)
Sum_{n>=5} 1/a(n) = 518/45 - 2*sqrt(2*(sqrt(5)+5))*Pi/3.
Sum_{n>=5} (-1)^(n+1)/a(n) = 8*sqrt(5)*arccoth(3/sqrt(5))/3 + 92*log(2)/15 - 418/45. (End)
Comments