A002282 a(n) = 8*(10^n - 1)/9.
0, 8, 88, 888, 8888, 88888, 888888, 8888888, 88888888, 888888888, 8888888888, 88888888888, 888888888888, 8888888888888, 88888888888888, 888888888888888, 8888888888888888, 88888888888888888, 888888888888888888, 8888888888888888888, 88888888888888888888, 888888888888888888888
Offset: 0
Examples
Curious multiplications: 9*9 + 7 = 88; 98*9 + 6 = 888; 987*9 + 5 = 8888; 9876*9 + 4 = 88888; 98765*9 + 3 = 888888; 987654*9 + 2 = 8888888; 9876543*9 + 1 = 88888888; 98765432*9 + 0 = 888888888; 987654321*9 - 1 = 8888888888; 9876543210*9 - 2 = 88888888888. - _Philippe Deléham_, Mar 09 2014
References
- Alfred S. Posamentier, Math Charmers, Tantalizing Tidbits for the Mind, Prometheus Books, NY, 2003, page 32.
Links
- Harry J. Smith, Table of n, a(n) for n = 0..200
- Index entries for linear recurrences with constant coefficients, signature (11,-10).
Crossrefs
Programs
-
Maple
A002282:=n->8*(10^n - 1)/9; seq(A002282(n), n=0..20); # Wesley Ivan Hurt, Mar 10 2014
-
Mathematica
LinearRecurrence[{11,-10}, {0,8}, 20] (* Harvey P. Dale, May 30 2013 *)
-
PARI
{ a=-4/5; for (n = 0, 200, a+=8*10^(n - 1); write("b002282.txt", n, " ", a); ) } \\ Harry J. Smith, Jun 27 2009
-
Python
def a(n): return 8*(10**n - 1)//9 # Martin Gergov, Oct 19 2022
Formula
From Jaume Oliver Lafont, Feb 03 2009: (Start)
a(n) = 11*a(n-1) - 10*a(n-2), with a(0)=0, a(1)=8.
G.f.: 8*x/((1-x)*(1-10*x)). (End)
a(n) = a(n-1) + 8*10^(n-1), with a(0)=0. - Vincenzo Librandi, Jul 22 2010
From Ilya Gutkovskiy, Sep 03 2016: (Start)
E.g.f.: 8*(exp(9*x) - 1)*exp(x)/9.
a(n) = floor(8*10^n/9). (End)
From Elmo R. Oliveira, Jul 20 2025: (Start)
a(n) = (A246058(n) - 1)/2.
Comments