A002295 Number of dissections of a polygon: binomial(6n,n)/(5n+1).
1, 1, 6, 51, 506, 5481, 62832, 749398, 9203634, 115607310, 1478314266, 19180049928, 251857119696, 3340843549855, 44700485049720, 602574657427116, 8175951659117794, 111572030260242090, 1530312970340384580, 21085148778264281865, 291705220704719165526
Offset: 0
Examples
There are a(2)=6 sextic trees (vertex degree <= 6 and 6 possible branchings) with 2 vertices (one of them the root). Adding one more branch (one more vertex) to these 6 trees yields 6*6 + binomial(6,2) = 51 = a(3) such trees.
References
- Miklos Bona, editor, Handbook of Enumerative Combinatorics, CRC Press, 2015, page 23.
- R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics. Addison-Wesley, Reading, MA, 1990, pp. 200, 347.
- G. Pólya and G. Szegő, Problems and Theorems in Analysis, Springer-Verlag, Heidelberg, New York, 2 vols., 1972, Vol. 1, problem 211, p. 146 with solution on p. 348.
- Ulrike Sattler, Decidable classes of formal power series with nice closure properties, Diplomarbeit im Fach Informatik, Univ. Erlangen - Nürnberg, Jul 27 1994
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Editor's note: "Über die Bestimmung der Anzahl der verschiedenen Arten, auf welche sich ein n-Eck durch Diagonalen in lauter m-Ecke zerlegen laesst, mit Bezug auf einige Abhandlungen der Herren Lamé, Rodrigues, Binet, Catalan und Duhamel in dem Journal de Mathématiques pures et appliquées, publié par Joseph Liouville. T. III. IV.", Archiv der Mathematik u. Physik, 1 (1841), pp. 193ff; see especially p. 198.
Links
- T. D. Noe, Table of n, a(n) for n = 0..100
- V. E. Adler and A. B. Shabat, Volterra chain and Catalan numbers, arXiv:1810.13198 [nlin.SI], 2018.
- Paul Barry, On the Gap-sum and Gap-product Sequences of Integer Sequences, arXiv:2104.05593 [math.CO], 2021.
- Wun-Seng Chou, Tian-Xiao He, and Peter J.-S. Shiue, On the Primality of the Generalized Fuss-Catalan Numbers, J. Int. Seqs., Vol. 21 (2018), #18.2.1.
- Olivier Danvy, Summa Summarum: Moessner's Theorem without Dynamic Programming, arXiv:2412.03127 [cs.DM], 2024. See p. 25.
- F. Harary, E. M. Palmer, and R. C. Read, On the cell-growth problem for arbitrary polygons, computer printout, circa 1974
- F. Harary, E. M. Palmer, and R. C. Read, On the cell-growth problem for arbitrary polygons, Discr. Math. 11 (1975), 371-389.
- Clemens Heuberger, Sarah J. Selkirk, and Stephan Wagner, Enumeration of Generalized Dyck Paths Based on the Height of Down-Steps Modulo k, arXiv:2204.14023 [math.CO], 2022.
- V. E. Hoggatt, Jr., 7-page typed letter to N. J. A. Sloane with suggestions for new sequences, circa 1977.
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 288
- R. P. Loh, A. G. Shannon, and A. F. Horadam, Divisibility Criteria and Sequence Generators Associated with Fermat Coefficients, Preprint, 1980.
- J.-C. Novelli and J.-Y. Thibon, Hopf Algebras of m-permutations,(m+1)-ary trees, and m-parking functions, arXiv preprint arXiv:1403.5962 [math.CO], 2014.
- Yuan (Friedrich) Qiu, Joe Sawada, and Aaron Williams, Maximize the Rightmost Digit: Gray Codes for Restricted Growth Strings, WALCOM 2025. See p. 5.
- B. Sury, Generalized Catalan numbers: linear recursion and divisibility, JIS 12 (2009), Article 09.7.5.
- L. Takacs, Enumeration of rooted trees and forests, Math. Scientist 18 (1993), 1-10, esp. Eq. (5).
- Jun Yan, Lattice paths enumerations weighted by ascent lengths, arXiv:2501.01152 [math.CO], 2025. See p. 7.
Programs
-
GAP
List([0..22],n->Binomial(6*n,n)/(5*n+1)); # Muniru A Asiru, Nov 01 2018
-
Magma
[Binomial(6*n, n)/(5*n + 1): n in [0..20]]; // Vincenzo Librandi, Mar 17 2015
-
Maple
A002295:=n->binomial(6*n, n)/(5*n + 1); seq(A002295(n), n=0..20); # Wesley Ivan Hurt, Jan 29 2014 n:=20:G:=series(RootOf(g = 1+x*g^6, g),x=0,n+1):seq(coeff(G,x,k),k=0..n); # Robert FERREOL, Apr 03 2015
-
Mathematica
Table[Binomial[6n, n]/(5n + 1), {n, 0, 20}] (* Stefan Steinerberger, Apr 06 2006 *)
-
PARI
A002295(n)=binomial(6*n,n)/(5*n+1) \\ M. F. Hasler, Apr 08 2015
Formula
O.g.f.: A(x) = 1 + x*A(x)^6 = 1/(1-x*A(x)^5).
a(n) = binomial(6*n,n-1)/n, n >= 1, a(0)=1. From the Lagrange series of the o.g.f. A(x) with its above given implicit equation.
a(n) = upper left term in M^n, M = the production matrix:
1, 1
5, 5, 1
15, 15, 5, 1
35, 35, 15, 5, 1
...
where (1, 5, 15, 35, ...) = A000332 starting with 1. - Gary W. Adamson, Jul 08 2011
a(n) are special values of Jacobi polynomials, in Maple notation:
a(n) = JacobiP(n-1, 5*n+1, -n, 1)/n, n=1, 2, ... . - Karol A. Penson, Mar 17 2015
a(n) = binomial(6*n+1, n)/(6*n+1) = A062993(n+4,4). - Robert FERREOL, Apr 03 2015
a(0) = 1; a(n) = Sum_{i1+i2+...+i6=n-1} a(i1)*a(i2)*...*a(i6) for n>=1. - Robert FERREOL, Apr 03 2015
D-finite with recurrence: 5*n*(5*n+1)*(5*n-3)*(5*n-2)*(5*n-1)*a(n) - 72*(6*n-5)*(6*n-1)*(3*n-1)*(2*n-1)*(3*n-2)*a(n-1) = 0. - R. J. Mathar, Sep 06 2016
From Ilya Gutkovskiy, Jan 15 2017: (Start)
O.g.f.: 5F4(1/6,1/3,1/2,2/3,5/6; 2/5,3/5,4/5,6/5; 46656*x/3125).
E.g.f.: 5F5(1/6,1/3,1/2,2/3,5/6; 2/5,3/5,4/5,1,6/5; 46656*x/3125).
a(n) ~ 3^(6*n+1/2)*64^n/(sqrt(Pi)*5^(5*n+3/2)*n^(3/2)). (End)
x*A'(x)/A(x) = (A(x) - 1)/(- 5*A(x) + 6) = x + 11*x^2 + 136*x^3 + 1771*x^4 + ... = (1/6)*Sum_{n >= 1} binomial(6*n,n)*x^n. Cf. A001764 and A002293 - A002296. - Peter Bala, Feb 04 2022
G.f. A(x) satisfies A(x) = 1/A(-x*A(x)^11). - Seiichi Manyama, Jun 16 2025
Extensions
More terms from Stefan Steinerberger, Apr 06 2006
Edited by M. F. Hasler, Apr 08 2015
Comments