A002413 Heptagonal (or 7-gonal) pyramidal numbers: a(n) = n*(n+1)*(5*n-2)/6.
0, 1, 8, 26, 60, 115, 196, 308, 456, 645, 880, 1166, 1508, 1911, 2380, 2920, 3536, 4233, 5016, 5890, 6860, 7931, 9108, 10396, 11800, 13325, 14976, 16758, 18676, 20735, 22940, 25296, 27808, 30481, 33320, 36330, 39516, 42883, 46436, 50180, 54120
Offset: 0
Examples
For n=7, a(7) = 7*1 + 6*6 + 5*11 + 4*16 + 3*21 + 2*26 + 1*31 = 308. - _Bruno Berselli_, Feb 10 2014
References
- A. H. Beiler, Recreations in the Theory of Numbers, Dover, NY, 1964, p. 194.
- E. Deza and M. M. Deza, Figurate numbers, World Scientific Publishing (2012), page 93.
- L. E. Dickson, History of the Theory of Numbers. Carnegie Institute Public. 256, Washington, DC, Vol. 1, 1919; Vol. 2, 1920; Vol. 3, 1923, see vol. 2, p. 2.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- T. D. Noe, Table of n, a(n) for n = 0..1000
- Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
- Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992
- Eric Weisstein's World of Mathematics, Heptagonal Pyramidal Number.
- Index to sequences related to pyramidal numbers
- Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1).
Programs
-
Magma
[n*(n + 1)*(5*n - 2)/6: n in [0..50]]; // G. C. Greubel, Nov 04 2017
-
Maple
A002413:=n->n*(n+1)*(5*n-2)/6: seq(A002413(n), n=0..60); # Wesley Ivan Hurt, Apr 14 2017
-
Mathematica
LinearRecurrence[{4, -6, 4, -1}, {1, 8, 26, 60}, 40] (* Ant King, Oct 25 2012 *) Table[(5n^3 + 3n^2 - 2n)/6, {n, 0, 39}] (* Alonso del Arte, Oct 25 2012 *)
-
Maxima
A002413(n):=n*(n+1)*(5*n-2)/6$ makelist(A002413(n),n,0,20); /* Martin Ettl, Dec 12 2012 */
-
PARI
a(n)=n*(n+1)*(5*n-2)/6 \\ Charles R Greathouse IV, Sep 24 2015
Formula
a(n) = n*(n + 1)*(5*n - 2)/6.
G.f.: x*(1 + 4*x)/(1 - x)^4. [Suggested by Simon Plouffe in his 1992 dissertation.]
From Ant King, Oct 25 2012: (Start)
a(n) = a(n - 1) + n*(5*n - 3)/2.
a(n) = 3*a(n - 1) - 3*a(n - 2) + a(n - 3) + 5.
a(n) = 4*a(n - 1) - 6*a(n - 2) + 4*a(n - 3) - a(n - 4)
a(n) = binomial(n + 2, 3) + 4*binomial(n + 1, 3) = (5*n - 2) * binomial(n + 1, 2)/3.
Sum_{n >= 1} 1/a(n) = 15*(log(3125) + sqrt(5)*log((3 - sqrt(5))/2) - 2*Pi*sqrt(5*(5 - 2*sqrt(5)))/5 - 8/5)/28 = 1.207293...
(End)
a(n) = Sum_{i=0..n-1} (n-i)*(5*i+1). - Bruno Berselli, Feb 10 2014
a(n) = A080851(5,n-1). - R. J. Mathar, Jul 28 2016
E.g.f.: x*(6 + 18*x + 5*x^2)*exp(x)/6. - Ilya Gutkovskiy, May 12 2017
a(n) = Sum_{i=0..n-1} (n+2*i)*(n-i). - Leonid Bedratyuk, Jul 09 2024
Extensions
More terms from James Sellers, Dec 23 1999
a(0)=0 prepended by Max Alekseyev, Nov 23 2011
Comments