cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A002413 Heptagonal (or 7-gonal) pyramidal numbers: a(n) = n*(n+1)*(5*n-2)/6.

Original entry on oeis.org

0, 1, 8, 26, 60, 115, 196, 308, 456, 645, 880, 1166, 1508, 1911, 2380, 2920, 3536, 4233, 5016, 5890, 6860, 7931, 9108, 10396, 11800, 13325, 14976, 16758, 18676, 20735, 22940, 25296, 27808, 30481, 33320, 36330, 39516, 42883, 46436, 50180, 54120
Offset: 0

Views

Author

Keywords

Comments

The partial sums of A000566. - R. J. Mathar, Mar 19 2008
A002413(n + 1) is the number of 4-tuples (w, x, y, z) having all terms in {0, ..., n} and w = floor((x + y + z)/2). - Clark Kimberling, May 28 2012
From Ant King, Oct 25 2012: (Start)
For n > 0, the digital roots of this sequence A010888(A002413(n)) form the purely periodic 27-cycle {1, 8, 8, 6, 7, 7, 2, 6, 6, 7, 5, 5, 3, 4, 4, 8, 3, 3, 4, 2, 2, 9, 1, 1, 5, 9, 9}.
For n > 0, the units' digits of this sequence A010879(A002413(n)) form the purely periodic 20-cycle {1, 8, 6, 0, 5, 6, 8, 6, 5, 0, 6, 8, 1, 0, 0, 6, 3, 6, 0, 0}.
(End)

Examples

			For n=7, a(7) = 7*1 + 6*6 + 5*11 + 4*16 + 3*21 + 2*26 + 1*31 = 308. - _Bruno Berselli_, Feb 10 2014
		

References

  • A. H. Beiler, Recreations in the Theory of Numbers, Dover, NY, 1964, p. 194.
  • E. Deza and M. M. Deza, Figurate numbers, World Scientific Publishing (2012), page 93.
  • L. E. Dickson, History of the Theory of Numbers. Carnegie Institute Public. 256, Washington, DC, Vol. 1, 1919; Vol. 2, 1920; Vol. 3, 1923, see vol. 2, p. 2.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A093562 ((5, 1) Pascal, column m = 3).
Cf. similar sequences listed in A237616.

Programs

Formula

a(n) = n*(n + 1)*(5*n - 2)/6.
G.f.: x*(1 + 4*x)/(1 - x)^4. [Suggested by Simon Plouffe in his 1992 dissertation.]
From Ant King, Oct 25 2012: (Start)
a(n) = a(n - 1) + n*(5*n - 3)/2.
a(n) = 3*a(n - 1) - 3*a(n - 2) + a(n - 3) + 5.
a(n) = 4*a(n - 1) - 6*a(n - 2) + 4*a(n - 3) - a(n - 4)
a(n) = (n + 1)*(2*A000566(n) + n)/6 = (5*n - 2)*A000217(n)/3.
a(n) = A000292(n) + 4*A000292(n - 1)
a(n) = A002412(n) + A000292(n - 1)
a(n) = A000217(n) + 5*A000292(n - 1)
a(n) = binomial(n + 2, 3) + 4*binomial(n + 1, 3) = (5*n - 2) * binomial(n + 1, 2)/3.
Sum_{n >= 1} 1/a(n) = 15*(log(3125) + sqrt(5)*log((3 - sqrt(5))/2) - 2*Pi*sqrt(5*(5 - 2*sqrt(5)))/5 - 8/5)/28 = 1.207293...
(End)
a(n) = Sum_{i=0..n-1} (n-i)*(5*i+1). - Bruno Berselli, Feb 10 2014
a(n) = A080851(5,n-1). - R. J. Mathar, Jul 28 2016
E.g.f.: x*(6 + 18*x + 5*x^2)*exp(x)/6. - Ilya Gutkovskiy, May 12 2017
a(n) = Sum_{i=0..n-1} (n+2*i)*(n-i). - Leonid Bedratyuk, Jul 09 2024

Extensions

More terms from James Sellers, Dec 23 1999
a(0)=0 prepended by Max Alekseyev, Nov 23 2011