A002492 Sum of the first n even squares: 2*n*(n+1)*(2*n+1)/3.
0, 4, 20, 56, 120, 220, 364, 560, 816, 1140, 1540, 2024, 2600, 3276, 4060, 4960, 5984, 7140, 8436, 9880, 11480, 13244, 15180, 17296, 19600, 22100, 24804, 27720, 30856, 34220, 37820, 41664, 45760, 50116, 54740, 59640, 64824, 70300, 76076, 82160
Offset: 0
References
- A. O. Barut, Group Structure of the Periodic System, in Wybourne, Ed., The Structure of Matter, University of Canterbury Press, Christchurch, 1972, p. 126.
- Edward G. Mazur, Graphic Representation of the Periodic System during One Hundred Years, University of Alabama Press, Alabama, 1974.
- W. Permans and J. Kemperman, "Nummeringspribleem van S. Dockx, Mathematisch Centrum. Amsterdam," Rapport ZW; 1949-005, 4 leaves, 19.8 X 34 cm.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Jose Manuel Garcia Calcines, Luis Javier Hernandez Paricio, and Maria Teresa Rivas Rodriguez, Semi-simplicial combinatorics of cyclinders and subdivisions, arXiv:2307.13749 [math.CO], 2023. See p. 32.
- Milan Janjic, Two Enumerative Functions
- Milan Janjić, On Restricted Ternary Words and Insets, arXiv:1905.04465 [math.CO], 2019.
- Milan Janjic and Boris Petkovic, A Counting Function, arXiv preprint arXiv:1301.4550 [math.CO], 2013. - From _N. J. A. Sloane_, Feb 13 2013
- Milan Janjic and Boris Petkovic, A Counting Function Generalizing Binomial Coefficients and Some Other Classes of Integers, J. Int. Seq. 17 (2014), Article #14.3.5.
- Ângela Mestre and José Agapito, Square Matrices Generated by Sequences of Riordan Arrays, J. Int. Seq., Vol. 22 (2019), Article 19.8.4.
- D. Neubert, Double Shell Structure of the Periodic System of the Elements, Z. Naturforschung, 25A (1970), p. 210.
- Karl-Dietrich Neubert, Double-Shell PSE: Metals - Nonmetals.
- Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992, arXiv:0911.4975 [math.NT], 2009.
- Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992.
- D. Suprijanto and Rusliansyah, Observation on Sums of Powers of Integers Divisible by Four, Applied Mathematical Sciences, Vol. 8, No. 45 (2014), pp. 2219-2226.
- Index entries for sequences related to Chebyshev polynomials.
- Index entries for two-way infinite sequences.
- Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1).
Crossrefs
Programs
-
Magma
[2*n*(n+1)*(2*n+1)/3: n in [0..40]]; // Vincenzo Librandi, Jun 16 2011
-
Maple
A002492:=n->2*n*(n+1)*(2*n+1)/3; seq(A002492(n), n=0..50); # Wesley Ivan Hurt, Apr 04 2014
-
Mathematica
Table[2n(n+1)(2n+1)/3, {n,0,40}] (* or *) Binomial[2*Range[0,40]+2,3] (* or *) LinearRecurrence[{4,-6,4,-1}, {0,4,20,56},40] (* Harvey P. Dale, Aug 15 2012 *) Accumulate[(2*Range[0,40])^2] (* Harvey P. Dale, Jun 04 2019 *)
-
PARI
a(n)=2*n*(n+1)*(2*n+1)/3
Formula
G.f.: 4*x*(1+x)/(1-x)^4. - Simon Plouffe in his 1992 dissertation
a(-1-n) = -a(n).
a(n) = (-1)^(n+1)*A053120(2*n+1,3) (fourth unsigned column of Chebyshev T-triangle, zeros omitted).
a(n) = binomial(2*n+2, 3). - Lekraj Beedassy, Jun 19 2004
a(n) - a(n-1) = 4*n^2. - Joerg Arndt, Jun 16 2011
a(n) = 4*a(n-1)-6*a(n-2)+4*a(n-3)-a(n-4) for n>3. - Harvey P. Dale, Aug 15 2012
a(n) = Sum_{k=0..3} C(n-2+k,n-2)*C(n+3-k,n), for n>2. - J. M. Bergot, Jun 14 2014
a(n) = 2*A006331(n). - R. J. Mathar, May 28 2016
From Natan Arie Consigli Jul 03 2016: (Start)
a(n) = A166464(n) - 1.
a(n) = A168380(2*n). (End)
From Amiram Eldar, Jan 04 2022: (Start)
Sum_{n>=1} 1/a(n) = 9/2 - 6*log(2).
Sum_{n>=1} (-1)^(n+1)/a(n) = 3*Pi/2 - 9/2. (End)
a(n) = A081277(3, n-1) = (1+2*n)*binomial(n+1, n-2)*2^2/(n-1) for n > 0. - Mathias Zechmeister, Jul 26 2022
E.g.f.: 2*exp(x)*x*(6 + 9*x + 2*x^2)/3. - Stefano Spezia, Jul 31 2022
Extensions
Minor errors corrected and edited by Johannes W. Meijer, Feb 04 2010
Title modified by Charles R Greathouse IV at the suggestion of J. M. Bergot, Apr 05 2014
Comments