A002538
Second-order Eulerian numbers <>.
1, 8, 58, 444, 3708, 33984, 341136, 3733920, 44339040, 568356480, 7827719040, 115336085760, 1810992556800, 30196376985600, 532953524275200, 9927928075161600, 194677319705702400, 4008789120817152000, 86495828444928000000, 1951566265951948800000, 45958933902500720640000
Offset: 1
References
- R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics, 2nd ed. Addison-Wesley, Reading, MA, 1994, p. 270.
- J. Ser, Les Calculs Formels des Séries de Factorielles. Gauthier-Villars, Paris, 1933, p. 83.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..447 (first 100 terms from T. D. Noe)
- E. Barcucci, A. Del Lungo and R. Pinzani, "Deco" polyominoes, permutations and random generation, Theoretical Computer Science, 159, 1996, 29-42.
- Steve Butler, Kimberly Hadaway, Victoria Lenius, Preston Martens, and Marshall Moats, Lucky cars and lucky spots in parking functions, arXiv:2412.07873 [math.CO], 2024. See p. 4.
- L. Carlitz, Some numbers related to the Stirling numbers of the first and second kind, Univ. Beograd Publ. Elektrotehn. Fak. Ser. Mat. Fiz., Numbers 544-576 (1976): 49-55. [Annotated scanned copy. The triangle is A008517.]
- Emma Colaric, Ryan DeMuse, Jeremy L. Martin, and Mei Yin, Interval parking functions, arXiv:2006.09321 [math.CO], 2020.
- I. Gessel and R. P. Stanley, Stirling polynomials, J. Combin. Theory, A 24 (1978), 24-33. (See Table 1.)
- O. J. Munch, Om potensproduktsummer [Norwegian, English summary], Nordisk Matematisk Tidskrift, 7 (1959), 5-19. [Annotated scanned copy]
- O. J. Munch, Om potensproduktsummer [ Norwegian, English summary ], Nordisk Matematisk Tidskrift, 7 (1959), 5-19. There are errors in the last two rows of his table.
- Jean-Christophe Novelli and Jean-Yves Thibon, Duplicial algebras and Lagrange inversion, arXiv preprint arXiv:1209.5959 [math.CO], 2012.
- J. Ser, Les Calculs Formels des Séries de Factorielles, Gauthier-Villars, Paris, 1933 [Local copy].
- J. Ser, Les Calculs Formels des Séries de Factorielles (Annotated scans of some selected pages)
- R. P. Stanley, A survey of the Bruhat order of the symmetric group
- Albert Tarn, Approximations to certain square roots and the series of numbers connected therewith [Annotated scanned copy]
Programs
-
Magma
[n le 1 select n else (n+2)*Self(n-1) + n*Factorial(n): n in [1..30]]; // Vincenzo Librandi, Aug 11 2018
-
Maple
egf:= (x+2*log(1-x))/(x-1)^3: a:= n-> n!*coeff(series(egf, x, n+1), x, n): seq(a(n), n=1..21); # Peter Luschny, Feb 12 2021 # Alternative: a := n -> (n + 1)! * ((n + 2)*harmonic(n + 2) - 2*n - 3); seq(a(n), n = 1..22); # Peter Luschny, Apr 09 2024
-
Mathematica
Table[(-1)^(n + 1)* Sum[(-1)^(n - k) k (-1)^(n - k) StirlingS1[n + 3, k + 3], {k, 0, n}], {n, 1, 16}] (* Zerinvary Lajos, Jul 08 2009 *) a[n_]:=(-1)*((2*n+3)*(n+1)!-Abs[StirlingS1[n+3,2]]);Flatten[Table[a[n],{n,1,21}]] (* Detlef Meya, Apr 09 2024 *)
-
PARI
N=66; x='x+O('x^66); Vec(serlaplace((x+2*log(1-x))/(x-1)^3)) \\ Joerg Arndt, Apr 09 2016
Formula
From Vladeta Jovovic, Sep 15 2003: (Start)
a(n) = Sum_{k=1..n} k * |Stirling1(n+2, k+2)|.
E.g.f.: (x+2*log(1-x))/(x-1)^3. (End)
With alternating signs: Ramanujan polynomials psi_2(n, x) evaluated at -1. - Ralf Stephan, Apr 16 2004
a(n) = (n+2)*a(n-1) + n*n!, n>=1, a(0):=0.
a(n) = (n+2)!*HarmonicSum(n+2) + (n+1)! - 2(n+2)! where HarmonicSum(n) = 1 + 1/2 + 1/3 + ... + 1/n. - David Callan, Mar 07 2006
a(n) = (n+1)!*((n+2)*h(n+2)-2*n-3) where h(n) = Sum_{k=1..n} 1/k. - Gary Detlefs, Mar 25 2011
Conjecture: a(n) + 2*(-n-2)*a(n-1) + (n^2+4*n+1)*a(n-2) - n*(n-1)*a(n-3) = 0. - R. J. Mathar, Oct 27 2014
a(n) = (-1)*((2*n + 3)*(n + 1)! - abs(Stirling1(n + 3, 2))). - Detlef Meya, Apr 09 2024
Extensions
More terms from Joerg Arndt, Apr 09 2016
Comments