cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A002897 a(n) = binomial(2n,n)^3.

Original entry on oeis.org

1, 8, 216, 8000, 343000, 16003008, 788889024, 40424237568, 2131746903000, 114933031928000, 6306605327953216, 351047164190381568, 19774031697705428416, 1125058699232216000000, 64561313052442296000000
Offset: 0

Views

Author

Keywords

Comments

Diagonal of the rational function R(x,y,z,w) = 1/(1 - (w*x*y + w*z + x + y + z)). - Gheorghe Coserea, Jul 14 2016
Conjecture: The g.f. is also the diagonal of the rational function 1/(1 - (x + y)*(1 - 4*z*t) - z - t) = 1/det(I - M*diag(x, y, z, t)), I the 4 x 4 unit matrix and M the 4 x 4 matrix [1, 1, 1, 1; 1, 1, 1, 1; 1, 1, 1, -1; 1 , 1, -1, 1]. If true, then a(n) = [(x*y*z)^n] (1 + x + y + z)^(2*n)*(1 + x + y - z)^n*(1 + x - y + z)^n. - Peter Bala, Apr 10 2022

References

  • S. Ramanujan, Modular Equations and Approximations to pi, pp. 23-39 of Collected Papers of Srinivasa Ramanujan, Ed. G. H. Hardy et al., AMS Chelsea 2000. See page 36, equation (25).
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Related to diagonal of rational functions: A268545-A268555.

Programs

  • Magma
    [Binomial(2*n, n)^3: n in [0..20]]; // Vincenzo Librandi, Nov 18 2011
  • Mathematica
    a[ n_] := SeriesCoefficient[ HypergeometricPFQ[ {1/2, 1/2, 1/2}, {1, 1}, 64x], {x, 0, n}];
    Table[Binomial[2n,n]^3,{n,0,20}] (* Harvey P. Dale, Dec 06 2017 *)
  • PARI
    {a(n) = binomial(2*n, n)^3}; /* Michael Somos, Jan 31 2007 */
    
  • Sage
    [binomial(2*n, n)**3 for n in range(21)] # Zerinvary Lajos, Apr 21 2009
    

Formula

Expansion of (K(k)/(Pi/2))^2 in powers of (kk'/4)^2, where K(k) is the complete elliptic integral of the first kind evaluated at modulus k. - Michael Somos, Jan 31 2007
G.f.: F(1/2, 1/2, 1/2; 1, 1; 64x) where F() is a hypergeometric function. - Michael Somos, Jan 31 2007
G.f.: hypergeom([1/4,1/4],[1],64*x)^2. - Mark van Hoeij, Nov 17 2011
D-finite with recurrence n^3*a(n) - 8*(2*n - 1)^3*a(n-1) = 0. - R. J. Mathar, Mar 08 2013
From Peter Bala, Jul 12 2016: (Start)
a(n) = binomial(2*n,n)^3 = ( [x^n](1 + x)^(2*n) )^3 = [x^n](F(x)^(8*n)), where F(x) = 1 + x + 6*x^2 + 111*x^3 + 2806*x^4 + 84456*x^5 + 2832589*x^6 + 102290342*x^7 + ... appears to have integer coefficients. For similar results see A000897, A002894, A006480, A008977, A186420 and A188662. (End)
a(n) ~ 64^n/(Pi*n)^(3/2). - Ilya Gutkovskiy, Jul 13 2016
0 = (-x^2 + 64*x^3)*y''' + (-3*x + 288*x^2)*y'' + (-1 + 208*x)*y' + 8*y, where y is g.f. - Gheorghe Coserea, Jul 14 2016
a(n) = Sum_{k = 0..n} (2*n + k)!/(k!^3*(n - k)!^2). Cf. A001850(n) = Sum_{k = 0..n} (n + k)!/(k!^2*(n - k)!). - Peter Bala, Jul 27 2016
It appears that a(n) is the coefficient of (x*y*z)^(2*n) in the expansion of (1 + x*y + x*z - y*z)^(2*n) * (1 + x*y - x*z + y*z)^(2*n) * (1 - x*y + x*z + y*z)^(2*n). Cf. A000172. - Peter Bala, Sep 21 2021
From Peter Bala, Sep 24 2022: (Start)
a(n) = Sum_{k = 0..n} binomial(n,k)^2*binomial(n+k,k)*binomial(2*n+k,n).
a(n) = the coefficient of (x*y*z*t^2)^n in the expansion of 1/(1 - x - y)*(1 - z - t) - x*y*z*t) (a(n) = A(n,n,n,2*n) in the notation of Straub, Theorem 1.2). (End)
a(n) = (8/5) * Sum_{k = 0..n} binomial(n,k)^2*binomial(n+k,k)*binomial(2*n+k-1,n) for n >= 1. - Peter Bala, Jul 09 2024
a(n) = Sum_{k = 0..n} binomial(n, k)^2 * A108625(2*n, k). Cf. A183204. - Peter Bala, Oct 12 2024
From Peter Bala, Oct 16 2024: (Start)
a(n) = Sum_{k = 0..n} (-1)^(n+k) * binomial(n, k)*binomial(2*n+k, k)*A108625(n, k) = 8 * Sum_{k = 0..n} (-1)^(n+k+1) * binomial(n-1, k)*binomial(2*n+k-1, k)*A108625(n, k) = (8/5) * Sum_{k = 0..n} (-1)^(n+k) * binomial(n, k)*binomial(2*n+k-1, k)*A108625(n, k) for n >= 1. Cf. A176285. (End)